Skip to main content

Dynamic Software Improvement and Mutation using LLMs for Stochastic Synthetic Code Injections.

Project description

fukkatsu PyPi GitHub license PyPI pyversions


Build Status
MAIN BUILD master
DEV BUILD development

pip install fukkatsu

API Keys

fukkatsu requires the environmental variable OPENAI_API_KEY and/or GOOGLE_API_KEY set.

Description

This is a proof of concept for a library that will leverage LLMs to dynamically fix and improve code during execution. fukkatsu is the japanese word, 復活, for "resurrection" or "revival". Metaphorically speaking, this library will attempt to fix your cars tire while you are driving it at 300 km/h.

This concept currently only applies to interpreted languages such as python and not to compiled languages such as C++. The very nature of interpreted languages allows us to dynamically change the code during runtime.

Furthermore, fukkatsu introduces a method to enhance ordinary functions with the power of LLMs. By decorating ordinary functions with natural language prompts, they can now dynamically adapt to unforeseen inputs.

Quick Start

import pandas as pd
from datetime import datetime

from fukkatsu import resurrect

@resurrect(
    lives=3,
    allow_installs = True,
    additional_req = "Account for multiple date formats if necessary.",
    active_twin = True,
    primary_model_api = "google",
    secondary_model_api = "openai",
    primary_config = {"model": "gemini-pro", "temperature": 0.01},
    secondary_config = {"model": "gpt-3.5-turbo", "temperature": 0.10}
)
def perform_data_transformation(data):
    """takes in list of date strings and transforms them into datetime objects.
    """
    date_format = '%Y-%m-%d'
    
    for idx, date in enumerate(data):
        data[idx] = datetime.strptime(date, date_format)
        
    return data

if __name__ == "__main__":

  data = [
          "2023-07-07", "1 June 2020",
          "2023.07.07", "2023-12-01",
          "2020/01/01", "Nov 11 1994"
          ]
  
  transformed_data = perform_data_transformation(data)
  
  transformed_data

fukkatsu 0.0.1 - Extra Life

Expand

fukkatsu 0.0.1 incorporates all the features demonstrated within the MVP section and introduces the concept of additional requests. Additional requests provide users with an alternative means of giving specific instructions to the LLM when a correction to a function is required. These additional requests act as a safeguard against potential misinterpretations by the LLM.

@resurrect(lives=1, additional_req = "add to any result 1000")
def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

print(my_function(x = 1, y = 0, z= 2))
print(my_function(x = 1, y = 0, z= 2)) # second function will trigger short term memory capabilities
ERROR:root:division by zero
Traceback (most recent call last):
  File "xxxxxxxxxxxxxxxxxxxxx", line 20, in wrapper
    result = func(*args, **kwargs)
  File "xxxxxxxxxxxxxxxxxxxxx", line 6, in my_function
    result = x / y + z
ZeroDivisionError: division by zero
WARNING:root:Input arguments: {'x': 1, 'y': 0, 'z': 2}
WARNING:root:
Source Code: 
 def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

WARNING:root:Requesting INITIAL correction
WARNING:root:Received INITIAL suggestion: def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    if y == 0:
        return z + 1000
    else:
        result = x / y + z
        return result + 1000
WARNING:root:Attempt 1 to reanimate
WARNING:root:Reanimation successful, using def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    if y == 0:
        return z + 1000
    else:
        result = x / y + z
        return result + 1000
ERROR:root:division by zero
Traceback (most recent call last):
  File "xxxxxxxxxxxxxxxxxxxxxxx", line 20, in wrapper
    result = func(*args, **kwargs)
  File "xxxxxxxxxxxxxxxxxxxxxxx", line 6, in my_function
    result = x / y + z
ZeroDivisionError: division by zero
WARNING:root:Input arguments: {'x': 1, 'y': 0, 'z': 2}
WARNING:root:
Source Code: 
 def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

WARNING:root:Correction already in memory
WARNING:root:Attempt 1 to reanimate
WARNING:root:Reanimation successful, using def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    if y == 0:
        return z + 1000
    else:
        result = x / y + z
        return result + 1000
1002
1002

fukkatsu 0.0.2 - The Ghost in the Machine

Expand

The mutate decorator introduces a new way to enhance ordinary functions dynamically via the power of LLMs, enabling them to adapt to specific inputs. It provides users with the ability to extend the capabilities of functions through natural language prompts. Additionally, the decorator can be further extended using the resurrect decorator. The mutate decorator enables users to program and account for cases that are challenging or impossible to anticipate.

@resurrect(lives=1)
@mutate(request= "Check the inputs closely. Given the inputs, make sure that the function is able to handle different formats if neccessary")
def my_mutated_function(file_path: str) -> pd.DataFrame():
    """
    function to read files and output a dataframes.
    """
    pd.read_csv(file_path)
    
my_mutated_function("test_file.xlsx")

fukkatsu 0.0.3 - Laissez-faire

Expand

The mutate and resurrect decorators now support a new argument called allow_installs. By default, allow_installs is set to False. However, when set to True, the LLM will be able to test whether suggested or used python libraries are installed on the system. If any of the libraries are not installed, the LLM will install them before continuing code execution. This argument enables the LLM to have even more freedom. Therefore, setting the argument to True should be considered carefully.

resurrect

def resurrect(lives: int = 1, additional_req: str = "", allow_installs: bool = False):
  ...

mutate

def mutate(request: str = "", allow_installs: bool = False):
  ...

fukkatsu 0.0.5 - Not so Evil Twin

Expand

The mutate and resurrect decorators now support new arguments active_twin, llm, and temperature. By default, active_twin is set to False, llm is set to {"primary": "gpt-3.5-turbo", "secondary": "gpt-3.5-turbo"}, and temperature is set to {"primary": 0.1, "secondary": 0.1}. This allows the user to configure the two decorators in a more granular way.

If active_twin is set to True, another LLM, the TWIN, will crosscheck the answer of the first LLM and make corrections if deemed necessary. This is highly experimental but might become very powerful as soon as more diverse LLMs become available.

resurrect

def resurrect(
    lives: int = 1,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    llm: dict = {"primary": "gpt-3.5-turbo", "secondary": "gpt-3.5-turbo"},
    temperature: dict = {"primary": 0.1, "secondary": 0.1},
):
  ...

mutate

def mutate(
    request: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    llm: dict = {"primary": "gpt-3.5-turbo", "secondary": "gpt-3.5-turbo"},
    temperature: dict = {"primary": 0.1, "secondary": 0.1},
):
  ...

fukkatsu 0.0.8 - I can see you

Expand

This release features a new decorator called stalk. The stalk decorator enables you to quality-check your functions during runtime. Stalk will randomly execute when your target function is called. The primary objective is to check if your target functions are still working as intended during your program execution. If stalk deems your function as behaving illogically, stalk will perform modifications and enhancements similar to the mutate decorator. You can decide how frequent stalk will check a particular function by setting the likelihood parameter. By default, the likelihood parameter is set to 1. A value of 1 indicates that stalk will quality-check the function every time it is called. A value of 0.5 indicates that stalk will quality-check the function half of the time it is called.

stalk

def stalk(
    likelihood: float = 1,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    llm: dict = {"primary": "gpt-3.5-turbo", "secondary": "gpt-3.5-turbo"},
    temperature: dict = {"primary": 0.1, "secondary": 0.1},
):
  ...

fukkatsu 0.0.10 - Sharing is Caring

Expand

This release includes new updates to the three decorators: resurrect, mutate, and stalk. Each decorator is now ready to support language model providers other than OpenAI in the future. To enable this, various changes have been made to the arguments. Please see below for the new arguments. By default, all models will be set to OpenAI. Support for new providers will be added as soon as they become available.

Configurating the openai model API via:

@dataclass
class OpenaiChatCompletionConfig:
    model: str
    temperature: float
    max_tokens: int
    n: int
    stop: Optional[str]

The default values set for the openai model API:

model: str = "gpt-3.5-turbo",
temperature: float = 0.1,
max_tokens: int = 1024,
n: int = 1,
stop: str = None,

resurrect

def resurrect(
    lives: int = 1,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
):
  ...

mutate

def mutate(
    request: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
):
  ...

stalk

def stalk(
    likelihood: float = 1.0,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
):
  ...

Appendix: How to use fukkatsu in a python class?

fukkatsu wrappers can be used in python classes in the following way:

from typing import List
import pandas as pd
from datetime import datetime

from fukkatsu import resurrect, mutate, stalk, reset_openai_key

@resurrect(
    lives=3,
    allow_installs = True,
    additional_req = "Account for multiple dateformats if necessary.",
    active_twin = True,
    primary_model_api = "openai",
    secondary_model_api = "openai",
    primary_config = {"model": "gpt-3.5-turbo", "temperature": 0.88},
    secondary_config = {"model": "gpt-3.5-turbo", "temperature": 0.33}
)
def perform_data_transformation(data:list):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_format = '%Y-%m-%d'
    
    for idx, date in enumerate(data):
        data[idx] = datetime.strptime(date, date_format)
        
    return data

data = ["2023-07-07", "1 June 2020", "2023.07.07", "2023-12-01", "2020/01/01", "Nov 11 1994"]



class TestClass:
    def __init__(self):
        self.test = "test"
        
    def test_wrapper_in_class(self, data: List):
        return perform_data_transformation(data)

test = TestClass()
test.test_wrapper_in_class(data)

fukkatsu 0.0.11 - The Humans are back

Expand

Feature to get human-in-the-loop functionality. Once a successful correction was determind, the user will be asked to confirm the correction suggestion via a simple "y" or "n" command line input.

resurrect

def resurrect(
    lives: int = 1,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
    human_action: bool = False,
    active_memory: bool = True,    
):
  ...

mutate

def mutate(
    request: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
    human_action: bool = False,
):
  ...

stalk

def stalk(
    likelihood: float = 1.0,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = False,
    primary_model_api: str = "openai",
    secondary_model_api: str = "openai",
    primary_config: dict = {},
    secondary_config: dict = {},
    human_action: bool = False,
):
  ...

Appendix

Added active_memory parameter to control the activation of the short term memory. Setting the active_memory parameter to False will prevent the resurrect decorator from remembering past solutions.

fukkatsu 0.0.13 - Making new Friends

Expand

This release will support Google's gemini-pro LLM. Each decorator will now support the google generative-ai SDK.

The following shows an example configuration that leverages OpenAI and Google LLM's:

resurrect

def resurrect(
    lives: int = 1,
    additional_req: str = "",
    allow_installs: bool = False,
    active_twin: bool = True,
    primary_model_api: str = "openai",
    secondary_model_api: str = "google",
    primary_config = {"model": "gemini-pro", "temperature": 0.1},
    secondary_config = {"model": "gpt-3.5-turbo", "temperature": 0.1}, 
    human_action: bool = True,
    active_memory: bool = True,    
):
  ...

Example ressurection configuration

import fukkatsu
print(fukkatsu.__version__)


from fukkatsu import resurrect

import pandas as pd
from datetime import datetime


@resurrect(
    lives=3,
    allow_installs = True,
    additional_req = "Account for multiple dateformats if necessary.",
    active_twin = True,
    primary_model_api = "google",
    secondary_model_api = "openai",
    primary_config = {"model": "gemini-pro", "temperature": 0.1},
    secondary_config = {"model": "gpt-3.5-turbo", "temperature": 0.1}, 
    human_action = True,
    active_memory = True
)
def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_format = '%Y-%m-%d'
    
    for idx, date in enumerate(data):
        data[idx] = datetime.strptime(date, date_format)
        
    return data


data = [
        "2023-07-07", "1 June 2020",
        "2023.07.07", "2023-12-01",
        "2020/01/01", "Nov 11 1994"
        ]

transformed_data = perform_data_transformation(data)

print(transformed_data)

Example logs of a live resurrection - Twin mode OpenAI + Google

(env) PS C:\Users\Max\Documents\Misc\fukkatsu-integration-tests> python .\test-dates-twin.py


2023-12-20 01:42:13,337 - Setting OPENAI_API_KEY
2023-12-20 01:42:13,337 - OPENAI_API_KEY found in environment variables.
2023-12-20 01:42:13,337 - Setting GOOGLE_API_KEY
2023-12-20 01:42:13,337 - GOOGLE_API_KEY found in environment variables.


2023-12-20 01:42:13,866 - time data '1 June 2020' does not match format '%Y-%m-%d'
Traceback (most recent call last):
  File "c:\users\max\documents\research\fukkatsu\fukkatsu\fukkatsu\__init__.py", line 43, in wrapper
    result = func(*args_copy, **kwargs_copy)
  File "C:\Users\Max\Documents\Misc\fukkatsu-integration-tests\test-dates-twin.py", line 29, in perform_data_transformation
    data[idx] = datetime.strptime(date, date_format)
  File "C:\Users\Max\AppData\Local\Programs\Python\Python39\lib\_strptime.py", line 568, in _strptime_datetime
    tt, fraction, gmtoff_fraction = _strptime(data_string, format)
  File "C:\Users\Max\AppData\Local\Programs\Python\Python39\lib\_strptime.py", line 349, in _strptime
    raise ValueError("time data %r does not match format %r" %
ValueError: time data '1 June 2020' does not match format '%Y-%m-%d'


2023-12-20 01:42:13,874 - Input arguments: {'data': ['2023-07-07', '1 June 2020', '2023.07.07', '2023-12-01', '2020/01/01', 'Nov 11 1994']}


2023-12-20 01:42:13,874 -
Source Code:
 def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_format = '%Y-%m-%d'

    for idx, date in enumerate(data):
        data[idx] = datetime.strptime(date, date_format)

    return data


2023-12-20 01:42:13,874 - Requesting INITIAL correction - Attempt 1



2023-12-20 01:42:13,874 - API REQUEST to google
2023-12-20 01:42:13,874 - API REQUEST to gemini-pro - Temperature: 0.1 - Max Tokens: 1024 - candidate_count: 1 - Stop: None
2023-12-20 01:42:17,296 - Received INITIAL RAW suggestion:
|||
import datetime

def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data

|||



2023-12-20 01:42:17,304 - Requesting TWIN review



2023-12-20 01:42:17,304 - API REQUEST to openai
2023-12-20 01:42:17,304 - API REQUEST to gpt-3.5-turbo - Temperature: 0.1 - Max Tokens: 1024 - N: 1 - Stop: None
2023-12-20 01:42:20,694 - TWIN review complete:
|||
import datetime

def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data
|||
2023-12-20 01:42:20,694 - Twin Safeguard: Function name changed to |||
import datetime

def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data
|||


2023-12-20 01:42:20,694 - Received INITIAL CLEANED suggestion:
import datetime

def perform_data_transformation(data):
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data


2023-12-20 01:42:20,694 - Import block added to suggested code:
 import datetime

def perform_data_transformation(data):
    import datetime
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data


2023-12-20 01:42:20,698 - Attempt 1 to reanimate



2023-12-20 01:42:20,698 - Reanimation successful, using:
import datetime

def perform_data_transformation(data):
    import datetime
    """takes in list of datestrings, transforms into datetime objects.
    """
    date_formats = ['%Y-%m-%d', '%d %B %Y', '%Y.%m.%d', '%Y-%m-%d %H:%M:%S', '%Y/%m/%d', '%b %d %Y']

    for idx, date in enumerate(data):
        for date_format in date_formats:
            try:
                data[idx] = datetime.datetime.strptime(date, date_format)
                break
            except ValueError:
                continue

    return data


2023-12-20 01:42:20,698 - Requesting human review
The following is the result of the reanimation attempt:

[datetime.datetime(2023, 7, 7, 0, 0), datetime.datetime(2020, 6, 1, 0, 0), datetime.datetime(2023, 7, 7, 0, 0), datetime.datetime(2023, 12, 1, 0, 0), datetime.datetime(2020, 1, 1, 0, 0), datetime.datetime(1994, 11, 11, 0, 0)]


Proceed? [y/n]y


[datetime.datetime(2023, 7, 7, 0, 0), datetime.datetime(2020, 6, 1, 0, 0), datetime.datetime(2023, 7, 7, 0, 0), datetime.datetime(2023, 12, 1, 0, 0), datetime.datetime(2020, 1, 1, 0, 0), datetime.datetime(1994, 11, 11, 0, 0)]

Samples - Synthetic Code in Action

Expand

resurrect - Twin not active

file_path = "status_field.xlsx"

@resurrect(lives=3, additional_req = "make sure that the function returns a DataFrame", allow_installs = True, active_twin = False)
def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df

read_file(file_path)

logs

Show Full Logs
2023-06-22 00:16:37,701 - 'utf-8' codec can't decode bytes in position 15-16: invalid continuation byte
Traceback (most recent call last):
  File "c:\users\max\documents\research\fukkatsu\fukkatsu\fukkatsu\__init__.py", line 34, in wrapper
    result = func(*args_copy, **kwargs_copy)
  File "C:\Users\Max\AppData\Local\Temp\ipykernel_9256\8051789.py", line 8, in read_file
    df = pd.read_csv(file_path)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__
    self._engine = self._make_engine(f, self.engine)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine
    return mapping[engine](f, **self.options)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header
  File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows
  File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status
  File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 15-16: invalid continuation byte
2023-06-22 00:16:37,705 - Input arguments: {'file_path': 'status_field.xlsx'}

2023-06-22 00:16:37,705 - 
Source Code: 
 def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df


2023-06-22 00:16:37,706 - Requesting INITIAL correction - Attempt 1

2023-06-22 00:16:37,707 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:16:42,114 - Received INITIAL RAW suggestion:
|||
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    """
    Read a CSV file and return a pandas DataFrame.

    Args:
        file_path (str): The path to the CSV file.

    Returns:
        pd.DataFrame: A pandas DataFrame containing the data from the CSV file.
    """
    df = pd.read_csv(file_path, encoding='utf-8')
    return df
|||

2023-06-22 00:16:42,114 - Received INITIAL CLEANED suggestion:
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    """
    Read a CSV file and return a pandas DataFrame.

    Args:
        file_path (str): The path to the CSV file.

    Returns:
        pd.DataFrame: A pandas DataFrame containing the data from the CSV file.
    """
    df = pd.read_csv(file_path, encoding='utf-8')
    return df

2023-06-22 00:16:42,114 - Import block added to suggested code:
 import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    import pandas as pd
    """
    Read a CSV file and return a pandas DataFrame.

    Args:
        file_path (str): The path to the CSV file.

    Returns:
        pd.DataFrame: A pandas DataFrame containing the data from the CSV file.
    """
    df = pd.read_csv(file_path, encoding='utf-8')
    return df

2023-06-22 00:16:42,114 - Attempt 1 to reanimate

2023-06-22 00:16:42,120 - 'utf-8' codec can't decode bytes in position 0-1: invalid continuation byte
Traceback (most recent call last):
  File "c:\users\max\documents\research\fukkatsu\fukkatsu\fukkatsu\__init__.py", line 34, in wrapper
    result = func(*args_copy, **kwargs_copy)
  File "C:\Users\Max\AppData\Local\Temp\ipykernel_9256\8051789.py", line 8, in read_file
    df = pd.read_csv(file_path)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__
    self._engine = self._make_engine(f, self.engine)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine
    return mapping[engine](f, **self.options)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header
  File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows
  File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status
  File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 15-16: invalid continuation byte

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "c:\users\max\documents\research\fukkatsu\fukkatsu\fukkatsu\__init__.py", line 116, in wrapper
    output = new_function(*args_copy, **kwargs_copy)
  File "<string>", line 14, in read_file
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__
    self._engine = self._make_engine(f, self.engine)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine
    return mapping[engine](f, **self.options)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas\_libs\parsers.pyx", line 665, in pandas._libs.parsers.TextReader._get_header
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 0-1: invalid continuation byte
2023-06-22 00:16:42,124 - Reanimation failed, requesting new correction

2023-06-22 00:16:42,124 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:16:45,294 - Received attempt RAW suggestion:
|||
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    try:
        df = pd.read_csv(file_path, encoding='utf-8')
    except UnicodeDecodeError:
        df = pd.read_excel(file_path)
    return df
|||

2023-06-22 00:16:45,294 - Received attempt CLEANED suggestion:
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    try:
        df = pd.read_csv(file_path, encoding='utf-8')
    except UnicodeDecodeError:
        df = pd.read_excel(file_path)
    return df

2023-06-22 00:16:45,294 - Import block added to suggested code:
 import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    import pandas as pd
    try:
        df = pd.read_csv(file_path, encoding='utf-8')
    except UnicodeDecodeError:
        df = pd.read_excel(file_path)
    return df

2023-06-22 00:16:45,294 - Attempt 2 to reanimate

2023-06-22 00:16:45,308 - Reanimation successful, using:
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    import pandas as pd
    try:
        df = pd.read_csv(file_path, encoding='utf-8')
    except UnicodeDecodeError:
        df = pd.read_excel(file_path)
    return df

Output

ID	Field	Cost	Country	Status
0	1	Eng	200000	Germany	active
1	1	Eng	200000	Italy	active
2	1	Eng	200000	UK	active
3	1	Eng	400500	US	active
4	1	Eng	100500	Italy	active
5	1	Eng	100500	Italy	deactivated
6	1	Eng	100500	Spain	active

resurrect - Twin active

file_path = "status_field.xlsx"

@resurrect(lives=3, additional_req = "make sure that the function returns a DataFrame", allow_installs = True, active_twin = True)
def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df

read_file(file_path)

logs

Show Full Logs
2023-06-22 00:19:40,599 - 'utf-8' codec can't decode bytes in position 15-16: invalid continuation byte
Traceback (most recent call last):
  File "c:\users\max\documents\research\fukkatsu\fukkatsu\fukkatsu\__init__.py", line 34, in wrapper
    result = func(*args_copy, **kwargs_copy)
  File "C:\Users\Max\AppData\Local\Temp\ipykernel_9256\423974772.py", line 8, in read_file
    df = pd.read_csv(file_path)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 912, in read_csv
    return _read(filepath_or_buffer, kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 577, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1407, in __init__
    self._engine = self._make_engine(f, self.engine)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\readers.py", line 1679, in _make_engine
    return mapping[engine](f, **self.options)
  File "C:\Users\Max\anaconda3\lib\site-packages\pandas\io\parsers\c_parser_wrapper.py", line 93, in __init__
    self._reader = parsers.TextReader(src, **kwds)
  File "pandas\_libs\parsers.pyx", line 548, in pandas._libs.parsers.TextReader.__cinit__
  File "pandas\_libs\parsers.pyx", line 637, in pandas._libs.parsers.TextReader._get_header
  File "pandas\_libs\parsers.pyx", line 848, in pandas._libs.parsers.TextReader._tokenize_rows
  File "pandas\_libs\parsers.pyx", line 859, in pandas._libs.parsers.TextReader._check_tokenize_status
  File "pandas\_libs\parsers.pyx", line 2017, in pandas._libs.parsers.raise_parser_error
UnicodeDecodeError: 'utf-8' codec can't decode bytes in position 15-16: invalid continuation byte
2023-06-22 00:19:40,604 - Input arguments: {'file_path': 'status_field.xlsx'}

2023-06-22 00:19:40,605 - 
Source Code: 
 def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df


2023-06-22 00:19:40,606 - Requesting INITIAL correction - Attempt 1

2023-06-22 00:19:40,607 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:19:44,843 - Received INITIAL RAW suggestion:
|||
import pandas as pd

def read_file(file_path: str) -> pd.DataFrame:
    """Reads a CSV file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the CSV file.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the CSV file.
    """
    df = pd.read_csv(file_path, encoding='utf-8')
    return df
|||

2023-06-22 00:19:44,843 - Requesting TWIN review

2023-06-22 00:19:44,843 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:19:50,260 - TWIN review complete:
|||
import pandas as pd

def read_file(file_path: str, sheet_name: str = None) -> pd.DataFrame:
    """
    Reads an Excel file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the Excel file.
        sheet_name (str, optional): The name of the sheet to read. Defaults to None.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the Excel file.
    """
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    return df
|||
2023-06-22 00:19:50,260 - Twin Safeguard: Function name changed to |||
import pandas as pd

def read_file(file_path: str, sheet_name: str = None) -> pd.DataFrame:
    """
    Reads an Excel file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the Excel file.
        sheet_name (str, optional): The name of the sheet to read. Defaults to None.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the Excel file.
    """
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    return df
|||

2023-06-22 00:19:50,260 - Received INITIAL CLEANED suggestion:
import pandas as pd

def read_file(file_path: str, sheet_name: str = None) -> pd.DataFrame:
    """
    Reads an Excel file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the Excel file.
        sheet_name (str, optional): The name of the sheet to read. Defaults to None.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the Excel file.
    """
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    return df

2023-06-22 00:19:50,260 - Import block added to suggested code:
 import pandas as pd

def read_file(file_path: str, sheet_name: str = None) -> pd.DataFrame:
    import pandas as pd
    """
    Reads an Excel file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the Excel file.
        sheet_name (str, optional): The name of the sheet to read. Defaults to None.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the Excel file.
    """
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    return df

2023-06-22 00:19:50,260 - Attempt 1 to reanimate

2023-06-22 00:19:50,275 - Reanimation successful, using:
import pandas as pd

def read_file(file_path: str, sheet_name: str = None) -> pd.DataFrame:
    import pandas as pd
    """
    Reads an Excel file and returns a pandas DataFrame.

    Args:
        file_path (str): The path to the Excel file.
        sheet_name (str, optional): The name of the sheet to read. Defaults to None.

    Returns:
        pd.DataFrame: The pandas DataFrame containing the data from the Excel file.
    """
    df = pd.read_excel(file_path, sheet_name=sheet_name)
    return df

Output

{'Sheet1':    ID Field    Cost  Country       Status
 0   1   Eng  200000  Germany       active
 1   1   Eng  200000    Italy       active
 2   1   Eng  200000      UK        active
 3   1   Eng  400500       US       active
 4   1   Eng  100500    Italy       active
 5   1   Eng  100500    Italy  deactivated
 6   1   Eng  100500    Spain       active}

mutate - Twin not active

file_path = "status_field.xlsx"

@mutate(request="look at the input file, make sure to change the function according to the file.")
def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df

read_file(file_path)

logs

Show Full Logs
2023-06-22 00:30:25,589 - Input arguments: {'file_path': 'status_field.xlsx'}

2023-06-22 00:30:25,590 - 
Source Code: 
 def read_file(file_path: str):
    """read file and return a data frame"""
    df = pd.read_csv(file_path)
    return df


2023-06-22 00:30:25,592 - Requesting mutation

2023-06-22 00:30:25,592 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:30:31,373 - Received RAW suggestion mutation:
||| 
import pandas as pd

def read_file(file_path: str):
    """
    Read file and return a data frame.
    
    Args:
    file_path (str): The path of the file to be read.
    
    Returns:
    pandas.DataFrame: The data frame containing the data from the file.
    """
    if file_path.endswith('.csv'):
        df = pd.read_csv(file_path)
    elif file_path.endswith('.xlsx'):
        df = pd.read_excel(file_path)
    else:
        raise ValueError('File format not supported. Please provide a CSV or Excel file.')
    return df
|||

2023-06-22 00:30:31,373 - Received CLEANED suggestion mutation: import pandas as pd

def read_file(file_path: str):
    """
    Read file and return a data frame.
    
    Args:
    file_path (str): The path of the file to be read.
    
    Returns:
    pandas.DataFrame: The data frame containing the data from the file.
    """
    if file_path.endswith('.csv'):
        df = pd.read_csv(file_path)
    elif file_path.endswith('.xlsx'):
        df = pd.read_excel(file_path)
    else:
        raise ValueError('File format not supported. Please provide a CSV or Excel file.')
    return df

2023-06-22 00:30:31,373 - Import block added to suggested code:
 import pandas as pd

def read_file(file_path: str):
    import pandas as pd
    """
    Read file and return a data frame.
    
    Args:
    file_path (str): The path of the file to be read.
    
    Returns:
    pandas.DataFrame: The data frame containing the data from the file.
    """
    if file_path.endswith('.csv'):
        df = pd.read_csv(file_path)
    elif file_path.endswith('.xlsx'):
        df = pd.read_excel(file_path)
    else:
        raise ValueError('File format not supported. Please provide a CSV or Excel file.')
    return df

2023-06-22 00:30:31,386 - Mutation successful, using import pandas as pd

def read_file(file_path: str):
    import pandas as pd
    """
    Read file and return a data frame.
    
    Args:
    file_path (str): The path of the file to be read.
    
    Returns:
    pandas.DataFrame: The data frame containing the data from the file.
    """
    if file_path.endswith('.csv'):
        df = pd.read_csv(file_path)
    elif file_path.endswith('.xlsx'):
        df = pd.read_excel(file_path)
    else:
        raise ValueError('File format not supported. Please provide a CSV or Excel file.')
    return df

Output

ID	Field	Cost	Country	Status
0	1	Eng	200000	Germany	active
1	1	Eng	200000	Italy	active
2	1	Eng	200000	UK	active
3	1	Eng	400500	US	active
4	1	Eng	100500	Italy	active
5	1	Eng	100500	Italy	deactivated
6	1	Eng	100500	Spain	active

stalk - Twin not active

@stalk(likelihood = 0.6, additional_req = "", allow_installs = False, active_twin = False, llm = {"primary": "gpt-3.5-turbo", "secondary": "gpt-3.5-turbo"}, temperature = {"primary": 0.1, "secondary": 0.1})
def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

print(my_function(x = 1, y = 0, z= 2))

logs

Show Full Logs
2023-06-22 00:39:25,914 - Random number: 0.2695059864882857, Likelihood: 0.6
2023-06-22 00:39:25,916 - Input arguments: {'x': 1, 'y': 0, 'z': 2}

2023-06-22 00:39:25,918 - 
Source Code: 
 def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result


2023-06-22 00:39:25,919 - Stalking function

2023-06-22 00:39:25,920 - API REQUEST to gpt-3.5-turbo
2023-06-22 00:39:30,115 - Received RAW suggestion from Stalker:
|||
def my_function(x, y, z):
    """
    This function divides x by y and adds to the result z. If y is 0, it returns z.
    Time complexity: O(1)
    Space complexity: O(1)
    """
    if y == 0:
        return z
    result = x / y + z
    return result
|||

2023-06-22 00:39:30,115 - Received CLEANED suggestion review: def my_function(x, y, z):
    """
    This function divides x by y and adds to the result z. If y is 0, it returns z.
    Time complexity: O(1)
    Space complexity: O(1)
    """
    if y == 0:
        return z
    result = x / y + z
    return result

2023-06-22 00:39:30,115 - Import block added to suggested code:
 def my_function(x, y, z):

    """
    This function divides x by y and adds to the result z. If y is 0, it returns z.
    Time complexity: O(1)
    Space complexity: O(1)
    """
    if y == 0:
        return z
    result = x / y + z
    return result

2023-06-22 00:39:30,115 - Review successful, using def my_function(x, y, z):

    """
    This function divides x by y and adds to the result z. If y is 0, it returns z.
    Time complexity: O(1)
    Space complexity: O(1)
    """
    if y == 0:
        return z
    result = x / y + z
    return result

Output

2

Testing and measuring fukkatsu's Capabilities

The following section delves into a series of simulations aimed at gaining a deeper understanding of fukkatsu's potential capabilities.

Please follow this Link for more information on fukkatsu's performance.

Legacy MVP

Expand

You can find a MVP within the poc folder. You can simply run the code via python mvp.py. The code will simulate a failing function, which will be repaird during execution. The mvp.py code will not request a correction to an OpenAi LLM but simply ueses a mock corrected function.

Foundation

Example:

  • we have a function called my_function which takes accepts three arguments: 'x', 'y', 'z' and returns a value calculated via x / y + z
  • lets assume the function my_function accidentally receives the value 0 for the argument 'y'
  • this will cause the function to fail with a ZeroDivisionError becaue it was not accounted for in the original function
  • fukkatsu offers a second chance here via the @mvp_reanimate decorator
  • the decorator will catch the error and request a correction from an OpenAi LLM such as gpt-3.5-turbo.
  • the corrected function will recieve the orignal arguments and handle the error as intended
  • to get the most of the correction ability of fukkatsu, it will be paramount for the user to provide a good description of the function and its intended purpose via a well defined docstring
  • fukkatsu makes sure that the LLM will receive all the necessary information to correct the function without changing its original purpose:
    • Full error traceback
    • original function code
    • passed arguments
@mvp_reanimate
def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

print(my_function(x = 1, y = 0, z= 2)) # would fail, but is corrected and returns 2
print(my_function(x = 2, y = 0, z= 10)) # would fail, but is corrected and returns 10
print(my_function(x = 9, y = 1, z= 2) + 10 )  # would not fail, returns 21.0

Please note, the example in the above is trivial however LLMs such as gpt-3.5-turbo are able to correct more complex functions. Once the library is more mature, more experiments and examples will show if such a use case for LLMs is worthwhile.

Extra life

Here is again a representation of what I am trying to achieve: https://media.tenor.com/r5nBe8Ft6yEAAAAC/ready-player-one-extra-life.gif

The code mvp code offers now the concept of extra lives. The idea of extra lives is to allow the user to define, per function, how often a LLM should attempt to fix errors. This will allow LLMs to futher explore other paths of fixing the code at runtime however it will also make sure to bound the runtime of the LLM.

Example:

@mvp_reanimate(lives=2)
def my_function(x, y, z):
    """
    function to divide x by y and add to the result z. Should return z if y is 0.
    """
    result = x / y + z
    return result

The above example will allow the LLM to attempt to fix the function twice. If the LLM fails to fix the function after two attempts, a flatline error will be raised which indicates that the LLM was not able to fix the function during runtime.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fukkatsu-0.0.13.tar.gz (35.0 kB view details)

Uploaded Source

Built Distribution

fukkatsu-0.0.13-py3-none-any.whl (20.3 kB view details)

Uploaded Python 3

File details

Details for the file fukkatsu-0.0.13.tar.gz.

File metadata

  • Download URL: fukkatsu-0.0.13.tar.gz
  • Upload date:
  • Size: 35.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for fukkatsu-0.0.13.tar.gz
Algorithm Hash digest
SHA256 18b52af3fddaf0af91ce572188f3ce325017edc5c80165c1bf4da1c75022c955
MD5 9c68c7b94aa7c3faed121838630f09a4
BLAKE2b-256 7e861225dff538a16de3fc08260678465df715cca7f118618b022016cb3b6ef3

See more details on using hashes here.

File details

Details for the file fukkatsu-0.0.13-py3-none-any.whl.

File metadata

  • Download URL: fukkatsu-0.0.13-py3-none-any.whl
  • Upload date:
  • Size: 20.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for fukkatsu-0.0.13-py3-none-any.whl
Algorithm Hash digest
SHA256 d966f859334ca1dd891750bc5f6e931f6a86b2023d95665346528048ea08694d
MD5 2ce0ce62cb35a869180305aaeb8a9fe2
BLAKE2b-256 d06a683cf14b5dc453d6cb4ac58510e093caaf88fa74e6876df689fbb554e732

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page