FunASR: A Fundamental End-to-End Speech Recognition Toolkit
Project description
Using funasr with ONNXRuntime
Introduction
- Model comes from speech_paraformer.
Steps:
-
Export the model.
-
Command: (
Tips
: torch >= 1.11.0 is required.)More details ref to (export docs)
e.g.
, Export model from modelscopepython -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
e.g.
, Export model from local path, the model'name must bemodel.pb
.python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
-
-
Install the
funasr_onnx
install from pip
pip install --upgrade funasr_onnx -i https://pypi.Python.org/simple
or install from source code
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
python setup.py build
python setup.py install
- Run the demo.
- Model_dir: the model path, which contains
model.onnx
,config.yaml
,am.mvn
. - Input: wav formt file, support formats:
str, np.ndarray, List[str]
- Output:
List[str]
: recognition result. - Example:
from funasr_onnx import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result)
- Model_dir: the model path, which contains
Performance benchmark
Please ref to benchmark
Acknowledge
- This project is maintained by FunASR community.
- We acknowledge SWHL for contributing the onnxruntime (for paraformer model).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
funasr_onnx-0.0.4.tar.gz
(22.4 kB
view details)
Built Distribution
File details
Details for the file funasr_onnx-0.0.4.tar.gz
.
File metadata
- Download URL: funasr_onnx-0.0.4.tar.gz
- Upload date:
- Size: 22.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b53da22e117c0729c473f0c0f226eca95770ece8228515da468c79a6cc0c3f92 |
|
MD5 | bc9e66755c633a303bc7486f948008a0 |
|
BLAKE2b-256 | 1e0617a352dd69e8c8b9730ae9c6cc771adb9ec6f9af542f461a98a22db715fa |
File details
Details for the file funasr_onnx-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: funasr_onnx-0.0.4-py3-none-any.whl
- Upload date:
- Size: 25.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | afc14ea22fb42dd8e5f4d39571f60837cd7e40ef679c486c983c504e2df521aa |
|
MD5 | 376410fea9808460ccacd543f4a6fb4f |
|
BLAKE2b-256 | 94e127cd5037507ece2a30523c473ab73762104af9fa0a43788d15cff3f87ba7 |