Skip to main content

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

Project description

Using funasr with ONNXRuntime

Introduction

Steps:

  1. Export the model.

    • Command: (Tips: torch >= 1.11.0 is required.)

      More details ref to (export docs)

      • e.g., Export model from modelscope
        python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
        
      • e.g., Export model from local path, the model'name must be model.pb.
        python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
        
  2. Install the funasr_onnx

install from pip

pip install --upgrade funasr_onnx -i https://pypi.Python.org/simple

or install from source code

git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
python setup.py build
python setup.py install
  1. Run the demo.
    • Model_dir: the model path, which contains model.onnx, config.yaml, am.mvn.
    • Input: wav formt file, support formats: str, np.ndarray, List[str]
    • Output: List[str]: recognition result.
    • Example:
      from funasr_onnx import Paraformer
      
      model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
      model = Paraformer(model_dir, batch_size=1)
      
      wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
      
      result = model(wav_path)
      print(result)
      

Performance benchmark

Please ref to benchmark

Acknowledge

  1. This project is maintained by FunASR community.
  2. We acknowledge SWHL for contributing the onnxruntime (for paraformer model).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funasr_onnx-0.0.4.tar.gz (22.4 kB view details)

Uploaded Source

Built Distribution

funasr_onnx-0.0.4-py3-none-any.whl (25.1 kB view details)

Uploaded Python 3

File details

Details for the file funasr_onnx-0.0.4.tar.gz.

File metadata

  • Download URL: funasr_onnx-0.0.4.tar.gz
  • Upload date:
  • Size: 22.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for funasr_onnx-0.0.4.tar.gz
Algorithm Hash digest
SHA256 b53da22e117c0729c473f0c0f226eca95770ece8228515da468c79a6cc0c3f92
MD5 bc9e66755c633a303bc7486f948008a0
BLAKE2b-256 1e0617a352dd69e8c8b9730ae9c6cc771adb9ec6f9af542f461a98a22db715fa

See more details on using hashes here.

File details

Details for the file funasr_onnx-0.0.4-py3-none-any.whl.

File metadata

  • Download URL: funasr_onnx-0.0.4-py3-none-any.whl
  • Upload date:
  • Size: 25.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for funasr_onnx-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 afc14ea22fb42dd8e5f4d39571f60837cd7e40ef679c486c983c504e2df521aa
MD5 376410fea9808460ccacd543f4a6fb4f
BLAKE2b-256 94e127cd5037507ece2a30523c473ab73762104af9fa0a43788d15cff3f87ba7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page