Skip to main content

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

Project description

Using funasr with ONNXRuntime

Steps:

  1. Export the model.

    • Command: (Tips: torch >= 1.11.0 is required.)

      More details ref to (export docs)

      • e.g., Export model from modelscope
        python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
        
      • e.g., Export model from local path, the model'name must be model.pb.
        python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
        
  2. Install the funasr_onnx

install from pip

pip install --upgrade funasr_onnx -i https://pypi.Python.org/simple

or install from source code

git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
python setup.py build
python setup.py install
  1. Run the demo.
    • Model_dir: the model path, which contains model.onnx, config.yaml, am.mvn.
    • Input: wav formt file, support formats: str, np.ndarray, List[str]
    • Output: List[str]: recognition result.
    • Example:
      from funasr_onnx import Paraformer
      
      model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
      model = Paraformer(model_dir, batch_size=1)
      
      wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
      
      result = model(wav_path)
      print(result)
      

Performance benchmark

Please ref to benchmark

Acknowledge

  1. This project is maintained by FunASR community.
  2. We acknowledge SWHL for contributing the onnxruntime (for paraformer model).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funasr_onnx-0.0.5.tar.gz (22.3 kB view details)

Uploaded Source

Built Distribution

funasr_onnx-0.0.5-py3-none-any.whl (25.0 kB view details)

Uploaded Python 3

File details

Details for the file funasr_onnx-0.0.5.tar.gz.

File metadata

  • Download URL: funasr_onnx-0.0.5.tar.gz
  • Upload date:
  • Size: 22.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for funasr_onnx-0.0.5.tar.gz
Algorithm Hash digest
SHA256 2fc2fba39a3af7fafda1844ee27ab668f897d11c48426b7f818a8d6fdbb9b9f6
MD5 d9c3b3c98ac18c8b6be832a2464b4e57
BLAKE2b-256 aa5d4570a3f73c12007166e109d737268a59f019a95015d18dee2da304e69b51

See more details on using hashes here.

File details

Details for the file funasr_onnx-0.0.5-py3-none-any.whl.

File metadata

  • Download URL: funasr_onnx-0.0.5-py3-none-any.whl
  • Upload date:
  • Size: 25.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.16

File hashes

Hashes for funasr_onnx-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 b15f28eef983036019262d52172e20bf3a8f48d2290b29b550dd210e4cb71a48
MD5 9cc47a275c650fcb20dd2fdd957ec7ef
BLAKE2b-256 a02f3ec23a4c06495e834a3dedaa4924bfac7d2d4eb5a9ced7dc0ff6d22ffff3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page