FunASR: A Fundamental End-to-End Speech Recognition Toolkit
Project description
Using funasr with ONNXRuntime
Steps:
-
Export the model.
-
Command: (
Tips
: torch >= 1.11.0 is required.)More details ref to (export docs)
e.g.
, Export model from modelscopepython -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
e.g.
, Export model from local path, the model'name must bemodel.pb
.python -m funasr.export.export_model --model-name ./damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type onnx --quantize False
-
-
Install the
funasr_onnx
install from pip
pip install --upgrade funasr_onnx -i https://pypi.Python.org/simple
or install from source code
git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/onnxruntime
python setup.py build
python setup.py install
- Run the demo.
- Model_dir: the model path, which contains
model.onnx
,config.yaml
,am.mvn
. - Input: wav formt file, support formats:
str, np.ndarray, List[str]
- Output:
List[str]
: recognition result. - Example:
from funasr_onnx import Paraformer model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model = Paraformer(model_dir, batch_size=1) wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav'] result = model(wav_path) print(result)
- Model_dir: the model path, which contains
Performance benchmark
Please ref to benchmark
Acknowledge
- This project is maintained by FunASR community.
- We acknowledge SWHL for contributing the onnxruntime (for paraformer model).
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
funasr_onnx-0.0.5.tar.gz
(22.3 kB
view details)
Built Distribution
File details
Details for the file funasr_onnx-0.0.5.tar.gz
.
File metadata
- Download URL: funasr_onnx-0.0.5.tar.gz
- Upload date:
- Size: 22.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2fc2fba39a3af7fafda1844ee27ab668f897d11c48426b7f818a8d6fdbb9b9f6 |
|
MD5 | d9c3b3c98ac18c8b6be832a2464b4e57 |
|
BLAKE2b-256 | aa5d4570a3f73c12007166e109d737268a59f019a95015d18dee2da304e69b51 |
File details
Details for the file funasr_onnx-0.0.5-py3-none-any.whl
.
File metadata
- Download URL: funasr_onnx-0.0.5-py3-none-any.whl
- Upload date:
- Size: 25.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b15f28eef983036019262d52172e20bf3a8f48d2290b29b550dd210e4cb71a48 |
|
MD5 | 9cc47a275c650fcb20dd2fdd957ec7ef |
|
BLAKE2b-256 | a02f3ec23a4c06495e834a3dedaa4924bfac7d2d4eb5a9ced7dc0ff6d22ffff3 |