Skip to main content

FunASR: A Fundamental End-to-End Speech Recognition Toolkit

Project description

Libtorch-python

Export the model

Install modelscope and funasr

# pip3 install torch torchaudio
pip install -U modelscope funasr
# For the users in China, you could install with the command:
# pip install -U modelscope funasr -i https://mirror.sjtu.edu.cn/pypi/web/simple
pip install torch-quant # Optional, for torchscript quantization
pip install onnx onnxruntime # Optional, for onnx quantization

Export onnx model

python -m funasr.export.export_model --model-name damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch --export-dir ./export --type torch --quantize True

Install the funasr_torch

install from pip

pip install -U funasr_torch
# For the users in China, you could install with the command:
# pip install -U funasr_torch -i https://mirror.sjtu.edu.cn/pypi/web/simple

or install from source code

git clone https://github.com/alibaba/FunASR.git && cd FunASR
cd funasr/runtime/python/libtorch
pip install -e ./
# For the users in China, you could install with the command:
# pip install -e ./ -i https://mirror.sjtu.edu.cn/pypi/web/simple

Run the demo

  • Model_dir: the model path, which contains model.torchscript, config.yaml, am.mvn.

  • Input: wav formt file, support formats: str, np.ndarray, List[str]

  • Output: List[str]: recognition result.

  • Example:

    from funasr_torch import Paraformer
    
    model_dir = "/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch"
    model = Paraformer(model_dir, batch_size=1)
    
    wav_path = ['/nfs/zhifu.gzf/export/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch/example/asr_example.wav']
    
    result = model(wav_path)
    print(result)
    

Performance benchmark

Please ref to benchmark

Speed

Environment:Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50GHz

Test wav, 5.53s, 100 times avg.

Backend RTF (FP32)
Pytorch 0.110
Libtorch 0.048
Onnx 0.038

Acknowledge

This project is maintained by FunASR community.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funasr_torch-0.1.3.tar.gz (2.6 kB view details)

Uploaded Source

Built Distribution

funasr_torch-0.1.3-py3-none-any.whl (2.3 kB view details)

Uploaded Python 3

File details

Details for the file funasr_torch-0.1.3.tar.gz.

File metadata

  • Download URL: funasr_torch-0.1.3.tar.gz
  • Upload date:
  • Size: 2.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.15

File hashes

Hashes for funasr_torch-0.1.3.tar.gz
Algorithm Hash digest
SHA256 d87387a2d1c9faa85c090918878c5205340ad72bd1cd7e6f6b20669b553bd83d
MD5 1e2997dd729938c794d1b9de79e217c3
BLAKE2b-256 e1dca281424e32df8a0ce4c5e6b20f553611b356406d85d0b102f4748d21a9dc

See more details on using hashes here.

File details

Details for the file funasr_torch-0.1.3-py3-none-any.whl.

File metadata

File hashes

Hashes for funasr_torch-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 63e2d93321f195e13c1fece239c766dd13d3bb1f31480ce99569b9b0f95edb43
MD5 32f56162c01bf41ed0f57ad1d3d2b163
BLAKE2b-256 5feddd20ba905c82d9aaf470ed5700237db8299615600d443800140b1e0eb53d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page