Skip to main content

Analyze function behavior using introductory calculus.

Project description

CI & Test Status

Gitlab Pipeline Status Coverage Report

Code Quality

Code Climate Codacy codebeat CodeFactor LGTM

Code Style

code style: black

Dependencies

Requirements Status

Usage

license

PyPI

python version latest release

This library uses concepts typically taught in an introductory Calculus class to describe properties of continuous, differentiable, single-variable functions.

Using this library

The func_analysis module defines the class AnalyzedFunc. An instance of this class has several attributes describing the behavior of this function.

Required data include:

  • A range

  • The function to be analyzed

Special points include zeros, critical numbers, extrema, and points of inflection. It’s possible to calculate these when given the number of points wanted.

Optional data can be provided to improve precision and performance. Such data include:

  • Any derivatives of the function

  • Any known zeros, critical numbers, extrema, points of inflection

  • Intervals of concavity, convexity, increase, decrease

  • Any vertical axis of symmetry

Any of the above data can be calculated by an instance of AnalyzedFunc.

Example Usage

This paste from an interactive Python session showcases all the functionality of AnalyzedFunc:

>>> from func_analysis import AnalyzedFunc

>>> import mpmath as mp; import numpy as np

>>> mp.pretty = True

>>> def example_func(x):
...     return mp.cos(x ** 2) - mp.sin(x) + (x / 68)
...

>>> analyzed_example = AnalyzedFunc(
...     func=example_func,
...     x_range=(-47.05, -46.3499),
...     zeros_wanted=21,
...     crits_wanted=21,
...     pois_wanted=21,
...     zeros=[-47.038289673236127, -46.406755885040056],
... )

>>> analyzed_example.zeros
array([mpf('-47.038289673236127'), mpf('-47.018473233395284'),
       mpf('-46.972318087653945'), mpf('-46.950739626397913'),
       mpf('-46.906204518117636'), mpf('-46.882958270910017'),
       mpf('-46.839955720658347'), mpf('-46.815121707485004'),
       mpf('-46.77357601136889'), mpf('-46.747224922729004'),
       mpf('-46.707068062964038'), mpf('-46.679264553080846'),
       mpf('-46.640433373296687'), mpf('-46.611238416225623'),
       mpf('-46.57367255467036'), mpf('-46.543145221101676'),
       mpf('-46.506785519620839'), mpf('-46.474984380574834'),
       mpf('-46.439771604599501'), mpf('-46.406755885040056'),
       mpf('-46.372629655875102')], dtype=object)

>>> analyzed_example.crits
array([mpf('-47.028400867252276'), mpf('-46.995216177440788'),
       mpf('-46.961552135996999'), mpf('-46.928318300227147'),
       mpf('-46.894608617023608'), mpf('-46.861324416365338'),
       mpf('-46.827569901478539'), mpf('-46.794234116960419'),
       mpf('-46.760435575283916'), mpf('-46.72704699248236'),
       mpf('-46.693205219083057'), mpf('-46.659762632756908'),
       mpf('-46.625878408195688'), mpf('-46.592380626945829'),
       mpf('-46.558454712583136'), mpf('-46.524900563516225'),
       mpf('-46.490933696823733'), mpf('-46.457322030198712'),
       mpf('-46.42331492009863'), mpf('-46.389644613934263'),
       mpf('-46.355597936188148')], dtype=object)

>>> analyzed_example.pois
array([mpf('-47.04521505151731'), mpf('-47.011813891641338'),
       mpf('-46.978389522478297'), mpf('-46.944940655832212'),
       mpf('-46.911468800195282'), mpf('-46.877972023301726'),
       mpf('-46.844452476333207'), mpf('-46.81090758498618'),
       mpf('-46.777340139630388'), mpf('-46.743746928888186'),
       mpf('-46.710131375870707'), mpf('-46.676489640045468'),
       mpf('-46.64282576785548'), mpf('-46.60913530049924'),
       mpf('-46.575422895374974'), mpf('-46.541683489262155'),
       mpf('-46.507922335179564'), mpf('-46.474133782285819'),
       mpf('-46.440323660950513'), mpf('-46.406485752427894'),
       mpf('-46.372626443270374')], dtype=object)

>>> analyzed_example.increasing
[Interval(start=-47.05, stop=mpf('-47.028400867252276')),
 Interval(start=mpf('-46.995216177440788'), stop=mpf('-46.961552135996999')),
 Interval(start=mpf('-46.928318300227147'), stop=mpf('-46.894608617023608')),
 Interval(start=mpf('-46.861324416365338'), stop=mpf('-46.827569901478539')),
 Interval(start=mpf('-46.794234116960419'), stop=mpf('-46.760435575283916')),
 Interval(start=mpf('-46.72704699248236'), stop=mpf('-46.693205219083057')),
 Interval(start=mpf('-46.659762632756908'), stop=mpf('-46.625878408195688')),
 Interval(start=mpf('-46.592380626945829'), stop=mpf('-46.558454712583136')),
 Interval(start=mpf('-46.524900563516225'), stop=mpf('-46.490933696823733')),
 Interval(start=mpf('-46.457322030198712'), stop=mpf('-46.42331492009863')),
 Interval(start=mpf('-46.389644613934263'), stop=mpf('-46.355597936188148'))]

>>> analyzed_example.decreasing
[Interval(start=mpf('-47.028400867252276'), stop=mpf('-46.995216177440788')),
 Interval(start=mpf('-46.961552135996999'), stop=mpf('-46.928318300227147')),
 Interval(start=mpf('-46.894608617023608'), stop=mpf('-46.861324416365338')),
 Interval(start=mpf('-46.827569901478539'), stop=mpf('-46.794234116960419')),
 Interval(start=mpf('-46.760435575283916'), stop=mpf('-46.72704699248236')),
 Interval(start=mpf('-46.693205219083057'), stop=mpf('-46.659762632756908')),
 Interval(start=mpf('-46.625878408195688'), stop=mpf('-46.592380626945829')),
 Interval(start=mpf('-46.558454712583136'), stop=mpf('-46.524900563516225')),
 Interval(start=mpf('-46.490933696823733'), stop=mpf('-46.457322030198712')),
 Interval(start=mpf('-46.42331492009863'), stop=mpf('-46.389644613934263')),
 Interval(start=mpf('-46.355597936188148'), stop=-46.3499)]

>>> analyzed_example.concave
[Interval(start=-47.05, stop=mpf('-47.04521505151731')),
 Interval(start=mpf('-47.011813891641338'), stop=mpf('-46.978389522478297')),
 Interval(start=mpf('-46.944940655832212'), stop=mpf('-46.911468800195282')),
 Interval(start=mpf('-46.877972023301726'), stop=mpf('-46.844452476333207')),
 Interval(start=mpf('-46.81090758498618'), stop=mpf('-46.777340139630388')),
 Interval(start=mpf('-46.743746928888186'), stop=mpf('-46.710131375870707')),
 Interval(start=mpf('-46.676489640045468'), stop=mpf('-46.64282576785548')),
 Interval(start=mpf('-46.60913530049924'), stop=mpf('-46.575422895374974')),
 Interval(start=mpf('-46.541683489262155'), stop=mpf('-46.507922335179564')),
 Interval(start=mpf('-46.474133782285819'), stop=mpf('-46.440323660950513')),
 Interval(start=mpf('-46.406485752427894'), stop=mpf('-46.372626443270374'))]

>>> analyzed_example.convex
[Interval(start=mpf('-47.04521505151731'), stop=mpf('-47.011813891641338')),
 Interval(start=mpf('-46.978389522478297'), stop=mpf('-46.944940655832212')),
 Interval(start=mpf('-46.911468800195282'), stop=mpf('-46.877972023301726')),
 Interval(start=mpf('-46.844452476333207'), stop=mpf('-46.81090758498618')),
 Interval(start=mpf('-46.777340139630388'), stop=mpf('-46.743746928888186')),
 Interval(start=mpf('-46.710131375870707'), stop=mpf('-46.676489640045468')),
 Interval(start=mpf('-46.64282576785548'), stop=mpf('-46.60913530049924')),
 Interval(start=mpf('-46.575422895374974'), stop=mpf('-46.541683489262155')),
 Interval(start=mpf('-46.507922335179564'), stop=mpf('-46.474133782285819')),
 Interval(start=mpf('-46.440323660950513'), stop=mpf('-46.406485752427894')),
 Interval(start=mpf('-46.372626443270374'), stop=-46.3499)]

>>> analyzed_example.relative_maxima
array([mpf('-47.028400867252276'), mpf('-46.961552135996999'),
       mpf('-46.894608617023608'), mpf('-46.827569901478539'),
       mpf('-46.760435575283916'), mpf('-46.693205219083057'),
       mpf('-46.625878408195688'), mpf('-46.558454712583136'),
       mpf('-46.490933696823733'), mpf('-46.42331492009863'),
       mpf('-46.355597936188148')], dtype=object)

>>> analyzed_example.relative_minima
array([mpf('-46.995216177440788'), mpf('-46.928318300227147'),
       mpf('-46.861324416365338'), mpf('-46.794234116960419'),
       mpf('-46.72704699248236'), mpf('-46.659762632756908'),
       mpf('-46.592380626945829'), mpf('-46.524900563516225'),
       mpf('-46.457322030198712'), mpf('-46.389644613934263')],
      dtype=object)

>>> analyzed_example.absolute_maximum
Coordinate(x_val=mpf('-46.355597936188148'), y_val=mpf('1.0131766438615282'))

>>> analyzed_example.absolute_minimum
Coordinate(x_val=mpf('-46.995216177440788'), y_val=mpf('-1.5627299417380764'))

>>> analyzed_example.signed_area
mpf('-0.1835790011406907')

>>> analyzed_example.unsigned_area
mpf('0.46577475660746492')

We can see that the inflection points of a function, the critical points of its first derivative, and the zeros of its second derivative are identical.

>>> np.array_equal(
...     analyzed_example.pois, analyzed_example.rooted_first_derivative.crits
... )
True

>>> np.array_equal(
...     analyzed_example.pois, analyzed_example.rooted_second_derivative.zeros
... )
True

Other examples to demonstrate the relationship between derivatives:

>>> np.array_equal(analyzed_example.concave, analyzed_example.rooted_first_derivative.increasing)
True

>>> np.array_equal(analyzed_example.first_derivative.convex, analyzed_example.rooted_second_derivative.decreasing)
True

A work-in-progress feature is listing x-values of vertical axes of symmetry. Here’s an example of a function that’s symmetric about the y-axis:

>>> def symmetric_func(x):
        return mp.power(x, 2) - 4

>>> analyzed_symmetric_example = AnalyzedFunc(
...     func=lambda x: mp.power(x, 2) - 4,
...     x_range=(-8,8),
...     zeros_wanted=2
... )

>>> analyzed_symmetric_example.vertical_axis_of_symmetry
[0.0]

License

This program is licensed under the GNU Affero General Public License v3 or later.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

func-analysis-0.3.0.tar.gz (19.9 kB view details)

Uploaded Source

Built Distribution

func_analysis-0.3.0-py3-none-any.whl (31.6 kB view details)

Uploaded Python 3

File details

Details for the file func-analysis-0.3.0.tar.gz.

File metadata

  • Download URL: func-analysis-0.3.0.tar.gz
  • Upload date:
  • Size: 19.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for func-analysis-0.3.0.tar.gz
Algorithm Hash digest
SHA256 3d952ec57f4fb8ed72c2aed0ce065c0a67f44bb7bc5dcca1b6e1a89f08308175
MD5 51d6896299b8d6101305ab0d6c87444a
BLAKE2b-256 563b91560abfb4bca9d22bb55e26f2620893a515fec1fb6bde0ab286faa84951

See more details on using hashes here.

File details

Details for the file func_analysis-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: func_analysis-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 31.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for func_analysis-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c7fd2682212f84425d9b51419bceb67c860b6970c0ef807977081714c49a5235
MD5 e887fc10368468dd1250e4a51efe8e33
BLAKE2b-256 2d6a6ba3cd7f725a122234d81ac66ba4519dcd074bf17d0db4230efd0e635c88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page