Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/neocortexdb/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polar as pl
import numpy as np
import functime

# Load commodities price data
y = pl.read_parquet("https://github.com/neocortexdb/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = (
    pl.Series(np.random.normal(0, 1, size=10))
    .ts.binned_entropy(bin_count=10)
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        pl.col("value").ts.binned_entropy(bin_count=10),
        pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        pl.col("value").ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        pl.col(value_col).ts.binned_entropy(bin_count=10),
        pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .select(
        pl.col("value").ts.binned_entropy(bin_count=10),
        pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        pl.col("value").ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

functime-0.9.0.tar.gz (23.3 MB view details)

Uploaded Source

Built Distributions

functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp312-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.0-cp312-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.0-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

functime-0.9.0-cp312-cp312-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

functime-0.9.0-cp311-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.0-cp311-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.0-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

functime-0.9.0-cp310-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.0-cp310-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.0-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

functime-0.9.0-cp39-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.0-cp39-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.0-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.0-cp39-cp39-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

functime-0.9.0-cp38-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.0-cp38-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.0-cp38-cp38-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.0-cp38-cp38-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

File details

Details for the file functime-0.9.0.tar.gz.

File metadata

  • Download URL: functime-0.9.0.tar.gz
  • Upload date:
  • Size: 23.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0.tar.gz
Algorithm Hash digest
SHA256 5241b34798dc102d91ed0e192c6905a262fc0ac2efedadfc5e24a4a49c5e57bd
MD5 a62e1822a76839f9ff46a52c52094860
BLAKE2b-256 9bd595c185138a48bbe365ef0072a6d9223515ccfc75a179cfa810e64bfb42d0

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7be052bf0d2c9d516d67e4216359db5ab0a6dfc9697e00949b96d1430f01359d
MD5 fed349e7953b900c537f107c9f9ceb00
BLAKE2b-256 f07e6c6b1e9d6375dfe9b84a3aa5c2418e72279d33b46c9aa8a7c6f49865d3ba

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fab1104d63a385da6cbfb01f4374637330831daa8f7d1e3a4c0c7fe0e715d6f2
MD5 744d6a6a6016798ed371641c8ead8a48
BLAKE2b-256 a939789486211c10d5121cac4c89cb86a0cb8438c9623c478c3791351bedc6cc

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3a004a34e37f4acff0dd30b8c796274a1de2c25e5b6c87ad4f713865e1c124ba
MD5 ef09e065892aef0b29d0fdb3546b02d4
BLAKE2b-256 83d4f0ae03ec6e15d0602175712b7775a95796d4b15285bfd856ebe5b1861a5f

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85ced1dc9293acdffb088e9de80400706a8d09c4f0145b6cdeda467a2c4120f6
MD5 6a676f185edb310404acacfcbbcc5b8b
BLAKE2b-256 9c7263ba383922b094c2d9f3db46f50b79f835bd62efa13c32b332eff455be14

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6137086a1bad30bea2881382227f253e5373f8b9318de03c29ae40ec816de217
MD5 b02829c79d1ac762559512af8226f273
BLAKE2b-256 48b23997a3eab09611dbcb776de5586c663014be305b4d405efc57368f3316ee

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4b775287fbc18d83104a7ebdc793196953911027891c0f8e13ccce2333b1d707
MD5 720f8145bccdd0cc11bd11d27afc2f92
BLAKE2b-256 e5dff9797e5db9264c7a2e1c4deec7dd8a677bb5222cbb87695133b63eaa3ee0

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2f97ddf8493f9249d73dd312b91bb153bef84039c71aaea2630441517f01c3d
MD5 f2fdbbb09f49caa8ada17a710b3c9066
BLAKE2b-256 aab822e37aa5c93f351f9dc76504465cc664415cd1362b1f67c080df74232780

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a49ac4ebd7f631fea5915ba4b543f5e39990dcd004f953e3ec3eea9639522cb
MD5 0b2eb46425a46e0a44ca5e733cc36e01
BLAKE2b-256 133d2d0a5b9ba5008490a491f41b92ad5ee2bf759dfd1d19f2bc990a9fb56610

See more details on using hashes here.

File details

Details for the file functime-0.9.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8b94010a4fe1c7e9fe17d413c7124f8f86a0408c9b2128bdf141b5b7202d44da
MD5 cfaad9e3c21985d586b8675210fa100e
BLAKE2b-256 be08c9a79a89b308086f4f5af5d5add045f759b91a53d18772b3b11e2fb317c9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c93c068e65e936a28c5d484c70193acd1a556bf7a6411ccedeebb432b36e248d
MD5 22042f800537ffe5f019ce5f8f25584f
BLAKE2b-256 ed38b651e1b053c1c3832bb322079274b02c59c30da8f50d68588e2fdc27dd14

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 55909d17b932c1d0249605befc6ce429272b6c0db3cd4bd1c505bc46badf0d36
MD5 6819867d328fd68d6d1d50cdd712544b
BLAKE2b-256 d4017b075854a887532569bf549e8959c4f66775b772f2227d3cef5d9757651d

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.0-cp312-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0-cp312-none-win32.whl
Algorithm Hash digest
SHA256 bf4f4155f19a538aa28afedf792528cca542c24245cca4f9417b6a42eb459c45
MD5 e6db2acc7932edfe65c141a86dcd7835
BLAKE2b-256 53aa86c50d906c76a0af99e870cd811282774a546d00a13277f74e3811c96c3c

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9ab0aec6065225c38500708261a4f2b26537277769bd8f81291b58a908dc2773
MD5 91ef6538de14ec074e74f135a2a6de57
BLAKE2b-256 a94c12119aa1a96804ab6acbabba1a776d6eed3ebb9c94b7fb01973f10212d07

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 70dd505232d08e6e9097b57ae70fa130864e4abfe2bbad3d09ff252e91cf457a
MD5 6380855f05d96a3561ff676dc66adf03
BLAKE2b-256 46edc6e95cda33ef2f232bd1e9077dc5faad94ee98c1ea6bd3cac1adb05b0af9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 3e622b4b1e59fa63d9f4686f5fd9fec82f9d8c1fde2e147aaf5fedb0711451be
MD5 1510d15a577a43b59c7bf7ae99d2e0eb
BLAKE2b-256 5ab41720d7486d755aa1cb08aaeef41e718ea8ea39a338d8f5a839bee9675c9d

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 160c8ec18cd32a1a056f9baef24bfcfa87b75944e13b7666946dc221f8732d03
MD5 27ddcca0bdcaec888b4c84046f77510e
BLAKE2b-256 c24869672852411808757e6912ca9216d811f3b213be28b7d110b983783c8303

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7d2cfa0a6546c75197dca06de8d1fdf65930f1c5efe64d2ba9065eaad534d612
MD5 feebbcf0f8d46284125cd96eaac938b6
BLAKE2b-256 cb2800cd2ab8cbadfbaf7ec328686e7fa55651b5392095cc4c8ca16ffad472a6

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 d8711695e3ecf401d2a9d6af2e89ec3e48d2046a89536d573ede1da578905654
MD5 e59eb25463bdd50969af6c462e82a4fc
BLAKE2b-256 031b246810539d67d21a2d3bb9f9dad4e55bc487955700dc2cba84bc0abfd9f9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.0-cp311-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0-cp311-none-win32.whl
Algorithm Hash digest
SHA256 fcc3ea121b959bb64562f79fa257239c0f9dca91a2bc75d4a02e2f4ff93863d4
MD5 3fb86ae605433b3a31ac05733d2a74bb
BLAKE2b-256 7ef13a4c57f9165e3726a9c82a156feb25b549faf71df6edacb4e7c37540870a

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e25041c2ff778ee0e9e6db5002ae0f553692c37b1ccded7951ba290eef8ec925
MD5 8d86c639413dec0e90c15f44c6441f8d
BLAKE2b-256 f5155dd4c2d62ca7a5c9f1cb40866d00e886fda49bb509e17ceebe7cc2091c9e

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5c9e626828405de793b6d1cf3d34eee1688394f70c8667e9cd633064bb69245a
MD5 27414f9e9b0adcbc96f4d22777add90e
BLAKE2b-256 5f19a226771bbf79c5010cc7077816e9fda576c628d1050fa4111fc8c529b1d8

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5b19fac3b43c9851b858f3a2374e72dde503b472be3b426ab543fb3fdb5e07ed
MD5 8b446cab574c310b7ba784f14b41f729
BLAKE2b-256 f0965de5c95bb2b1da59598fcd64588153dda9923e390fd5b1ff17d0b19433c5

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 548bd3ee26946e0ac091b69a109828fd9e14446b667c784ff8b563d99ffe744d
MD5 50675dfec15e0218dbf7424aafc4451b
BLAKE2b-256 174881dcd6d011df6195fdfd1cdf508760e16eef0b5c4c0029b2fc168ebd1036

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ace89e1f018b75b339bbcc250a4848bb1ae7e2a73788e098571f9e01507aa672
MD5 d4c589ed0500ac304acafae3ba507bba
BLAKE2b-256 354ace6688f1aa87ff6ced37e3836e985050533b360eba9573b452388ef8e399

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 4d9a885a2f6666366c8eee5e51d8a7beff28e674da00777d325670e3a801b7b7
MD5 4e5b9ae76a096b7755e075cbbd69997c
BLAKE2b-256 7695c2e9987f1c0ce56aee789a45cfd13da3d9bafa04c3ae874f4110540d9090

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.0-cp310-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0-cp310-none-win32.whl
Algorithm Hash digest
SHA256 bea64ff808aa9297609287f9d2c509085c6c5712c66dfdaa20c515b9b64b4db5
MD5 9937ae95e1d9843daee0d0e1c75db6b3
BLAKE2b-256 a3b8522ec3fb9ee9392d3706894e99b5448aa25c6c7188e1da5f61b3949a21e8

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d375c16def36245db04057b6eca7593e800020718b182ea307c3434fec3e429
MD5 3926a8d33e6b91184d9bc9aae214b579
BLAKE2b-256 55937b8fde136d9ef4a0d91f43b265a7112ff67e68c24b7a8c441daa4195f433

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b3fa98f4e1f446bf105a269d9e83857d211e9a9df2900010c18091d18dfb1dc6
MD5 b74ac1f9a6e5b7cf569d08cbd8c90c4d
BLAKE2b-256 75c9769ae906ab2ae3cfa2c87aa112406cf4fe74f706a48fbfa50c9a53fd4221

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e808e22b71c3964e71e70b279ac4aae4483f98939a301aefc0ddf42dd5d66c73
MD5 3926c3e2ccd1436c77f801829bfa3f2e
BLAKE2b-256 75d138297984aaa4b685510dc90ee199157fd68293e8bad217433a0227349ea3

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e7ac50a7604ddc2cb35ae1c610e2eb6d5abff678eabbca7a88838825a84f91e0
MD5 02a6f9897733bcae303eae2d48524dc5
BLAKE2b-256 b72510c5fd1e9f61f7aade63ec8cf808e0a490b934dc3b2404afb029182156d9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 053e8fd2217f1849d69eb33ddcf1b865024b10a1339eaa84a1b072697f5264b2
MD5 ac3492f22404674bd9e50668de7e7814
BLAKE2b-256 f83b9b8f58611028fc43d00c790180cc76aba233729b687e53430e8553a8eae9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 67b1fbe10636b4c726d8305430f7d03c1f1f6e238dff969482883be802a523dc
MD5 6af5e8db2408e21ec38580825c65a4df
BLAKE2b-256 de786885db4b2d7cb15b659a990e7e674722baa0d3115f33ffb4d29f9ddd0a5e

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.0-cp39-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0-cp39-none-win32.whl
Algorithm Hash digest
SHA256 c1c3f02882bedc56bbd649427b8eb70c6691d293c94feb51fc28b3dacbf5e501
MD5 046cb8740d1a48c857087c1d2a403b94
BLAKE2b-256 d281bb54fce362ff689de28e9e466dcccfc6f7d204ef0a749880098bc6f7a166

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b53af59b20234eadb78ce7101a02f5dcee7458af247b5ed7a224acdb738e68b
MD5 8e954404f52f0789f75934e63b81a2bd
BLAKE2b-256 310c6bbc87cf1acf2f78ec10c50e1ce4e9b22f3d951f3ec887c70799a9749608

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0f735184272efe26da3f5d7ea7be3a37e52e858b371609c9efab00eb0ab4f73
MD5 c5440faaeb0526296080039a9a0d860f
BLAKE2b-256 8727914bc52950afa8c4e77c783763467084dc1b779e9eb644c8079065418a65

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f124dd00681ff860b3fff6158a4d25ce0e1ebf6599c47a200dcdd7d206247bd7
MD5 07e8d2feffa427473d54d8e1d925e12a
BLAKE2b-256 1feda1657984c441857f36b106191d68044a2d847093435e9bfff7bbb1c9c11d

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3ab651c3ce1c05353f2d29aea9ebc1db644acc7381497da81736685e6a26873b
MD5 69b8cb2ccb5e549083d5a92913ac3ead
BLAKE2b-256 90efef8823255fda3357899d823d7469f56219f4fbaba1bc955d2948cd60e0f9

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c47ed3b184bf582e09de73926aecf55dce547e0779b29a7e2d90654b0b20acf5
MD5 990b08f6d5fc747b5de51eae6f6d7d74
BLAKE2b-256 793ed19485e70555e9861ac1a2749fd96ee6f0c6d9c827d9d8a0763527e539ad

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 28bc104784112ed4a3b4fdbbabc9000ad250a84e0075a213900a2dbca8fec711
MD5 bd08c45873d89ee61a929e663e5493a6
BLAKE2b-256 da09e5d7538ff232c8e2936c7278ff3b942203d93812f00c17e3bfda854a2def

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.0-cp38-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.1

File hashes

Hashes for functime-0.9.0-cp38-none-win32.whl
Algorithm Hash digest
SHA256 81db56ede60b8584da2d5b2495544ce488d11e5e292c62905bfd35e40344f824
MD5 de22c96ab5d2a816d4ac93bb9965e662
BLAKE2b-256 e14fd003ec0016818914eace0d46d56480c698727dee67a5f523d0c5d6e11597

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c0410334938a6268f54c54607bbc93f601ea961fcde7e84ca1fab294e66326f
MD5 fabfa91b84bd371cc5c785e815d96a69
BLAKE2b-256 a7364c787a6b479c0305400c7df79fddb17a3abf85a9c9e4517d4f7f28ae839c

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fb4ba24afcd983232313b611b4dc8de8dd9c6196518aa9ea5baae1ca17388fe5
MD5 43110426c8f34423a84308b325d2309e
BLAKE2b-256 33fa0f107039b1d57ce9b4d78ce6a3ab3534e686d74ac33ea853cd19ebaeeca2

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 add6624aea07b838bc23700745a4a666536d5368e1c55157951a431e7ab084bf
MD5 4002bb4b0aac4a3cd42256fbcc1caffe
BLAKE2b-256 bd00408185d18ff99d493df3899fe225b9996d0a814872f807f729c74369e696

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8054b5db6ccbaea7261ae79ec0d0552e4c82eafc244babde8c1c5b1c43a19ef7
MD5 be47beb5b313e440810dc29758a7dd57
BLAKE2b-256 ba41fd1f3d10f86750c657b3fa38b000d0790d758e80ff1542ca9d8c657b1aa8

See more details on using hashes here.

File details

Details for the file functime-0.9.0-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.0-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 2b3cef07bad9f56a267451ccf8c685c5e21e4b373745f98fe15b696580215d08
MD5 2789b219a9a9cdacfc1b5eb85bfc0528
BLAKE2b-256 232a00e7f1f7c9951687093f37d9e65cd100bd5bd3663669ba3999fb98e88fb6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page