Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/neocortexdb/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polar as pl
import numpy as np
import functime

# Load commodities price data
y = pl.read_parquet("https://github.com/neocortexdb/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = (
    pl.Series(np.random.normal(0, 1, size=10))
    .ts.binned_entropy(bin_count=10)
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        pl.col("value").ts.binned_entropy(bin_count=10),
        pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        pl.col("value").ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        pl.col(value_col).ts.binned_entropy(bin_count=10),
        pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .select(
        pl.col("value").ts.binned_entropy(bin_count=10),
        pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        pl.col("value").ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

functime-0.9.1.tar.gz (23.3 MB view details)

Uploaded Source

Built Distributions

functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp312-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.1-cp312-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.1-cp312-cp312-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

functime-0.9.1-cp311-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.1-cp311-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.1-cp311-cp311-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

functime-0.9.1-cp310-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.1-cp310-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.1-cp310-cp310-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

functime-0.9.1-cp39-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.1-cp39-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.1-cp39-cp39-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.1-cp39-cp39-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

functime-0.9.1-cp38-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.1-cp38-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.1-cp38-cp38-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.1-cp38-cp38-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

File details

Details for the file functime-0.9.1.tar.gz.

File metadata

  • Download URL: functime-0.9.1.tar.gz
  • Upload date:
  • Size: 23.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1.tar.gz
Algorithm Hash digest
SHA256 0b52cf5c9496aee5854fd19e492c844a4892308edf585666eca6109b0861d5bc
MD5 c969705c5b59ac0efbe68301e1046971
BLAKE2b-256 f4b76cbfbaac99e431cc078ebeb3b47b508350784735c71bf806f53506f18fb3

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aad2ed1cea5d876962412d6c81cfced2b6de35f064c0e925e31657ce7ab6c4d3
MD5 56e39c99b45003438fbc1e1e07edee13
BLAKE2b-256 b05343554620faa862886d70ae4b87d51d207570b97974e572382e94fd0fa1c2

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8540086920ff6c38c2cdf60fd4bb87c7cdad8fc463c7c886113236897517b1b0
MD5 69d7942ae856929ef5bc144d8129d9d3
BLAKE2b-256 d002b73ab0db19c72bd2bad825932141fd00799ea2359bd76a5ebc08c6db8e48

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e1228d527f7651b236658e7e0eeb292fd3a4d9053c2cf09c05e6e916c28332fe
MD5 44de49576fe1a88ffc26cccb33faaa78
BLAKE2b-256 dc92456143b2e378015526bfde74ddd076fd5608b872bfeaf41bba0098c610e0

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcb00b21579ce7b5b543dd69a800b631f0a3680c49d7104943f55c04df960cbb
MD5 8cd6bad7e49c0dab15b3e31127457697
BLAKE2b-256 24ae1763f329d43d62144ebfd62b20c80890c327cb03ecc5b41a592ba2bf15cd

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 23930399877c3492a6d4b734811f35d62c41a4d1742ae3e5867e7955083a5db4
MD5 f0a30402f920147396d1d5a4cc3d5c6d
BLAKE2b-256 ec3e66e66d86018b90c29cfc61675973e512723a890231c5513db68357138b5c

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e0a701c1addd45eff7c9a74056a19621751bdd355cdc1cfc1d875b934c473c68
MD5 128169df01cba7f082e109211ce41ad0
BLAKE2b-256 000ee7fe8320294bee88a9c6432f28fa0aac34e5082db1609671afd91b416a65

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b4df9808a65a1b679afd155a3737c6752c283bfca77248af547faa33ba60edd8
MD5 561d060283432a339a74d61de63ffdba
BLAKE2b-256 c3fce11a3e701db5abffb1453ec3f2f2c1490b3af746637a81b5c51b3b815541

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6db951a894c5f06015329816995058274be8948586b8c7d478fcc496bc79136a
MD5 0cafaa2a00c38704ba7694fb81410cb5
BLAKE2b-256 776cb6e124769048a286a522cb1265a5d2e6be33b7dbaaefb0a110fde35c22a4

See more details on using hashes here.

File details

Details for the file functime-0.9.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 bf4ba50373283e6b7e39b3f6608497ee9e740f1b5e6258ceeca6e1fee032eb55
MD5 91f96e654b71897e1690a6faf49ca889
BLAKE2b-256 652a6cb668e335d936355371dfb4726e8fedd078f9daf07c3eed68eeb3af4869

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03dc07facf933ceeba7437409467030de1c9118fe2bd6300d58595a4d3b054f9
MD5 f8f2d9da03492171c1b87c3869cc0e28
BLAKE2b-256 d4c87712558af55825a9a84bfdd3bdd2d4e82bd618e3e9e6c11bcf7f8a0991e1

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 d06cd89ca0d05d60d14833dae41814f6e90aac84d5b3c77eae14d232d6b9abf6
MD5 6574652fa2d9778418860699204b4ad5
BLAKE2b-256 a71cb978835d842b3e771d92cfc0980a35e8eea694821581456200463ec740b6

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.1-cp312-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1-cp312-none-win32.whl
Algorithm Hash digest
SHA256 711137ab0d5ba2023d5c00d79ac43ffa996d25b169292f105ed499fecc06da8f
MD5 9194fa6be212237ca4123de7e4a9f1a7
BLAKE2b-256 856fe3fff55f2b7bbe0ac926565f066da69819f37d327e76510665401548e91c

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec30630ffab1da6c8e52a8beb21fdbc3cd58bf9055565cf686c3aa6f7b7a1f8e
MD5 f2af274894459ebb683178d70d741b46
BLAKE2b-256 83f7e01e951c3a6e7c795efca76f95071e16088f1a2d305990042a390c167996

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f0362b0639776c894f9aa48e61a37ea646157ab85222edfcd1a8f5944931daf
MD5 3a1bbc4d70f38fe5f3a7fdfbf21456cd
BLAKE2b-256 875d487190f7bcd8875ba33e648a2e035f807aecf1d17ce37bf40ba7aa4f1f19

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 6d04724424aa70f628e3c1780aef24c3da65af0ad602737c243d3d66aae3276f
MD5 08eef4d76897a24f2dded1fc7bfa514e
BLAKE2b-256 d7d7122bb8bbd03b0fc1d7cdd20b776e7f09c3653edda82e1dbfaf7a0772d764

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 5617852b42899acf6c15a1e30a756bae99722ac5aebd42b1167c813f02d3b056
MD5 9a1599facd8f09c69b8f2a3949e21333
BLAKE2b-256 850495a6fda7b792796b08c4fa7e1c3a3d86cd0b5051f6e8b6b749f95d1d503f

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 76d6363622e24e8ee9090ae87e47df45d9fb471d6be19dde905f2e0da8625082
MD5 67db485209299c16f065d628e5208e29
BLAKE2b-256 b8eb5972b0f9a9944ba36eec293f4fa724d93f65b973d3dc373ac22ba33d4925

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.1-cp311-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 515b5f7ad97ea97d57547096436d68d2d8e3fe691274709595193a065acaef48
MD5 b8c7f65df3fc59088c16f174f1aaa58d
BLAKE2b-256 df9e85c3513a52430aa4fbddad2537ce382efc17784b31fae6aadc5058409f0a

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 142027cfdb2fdce53ee7962950c7445fbcc2c0d7842c8969df0a63cda5ae4d84
MD5 48e9a315fae5f1e15d6ea60009fd9251
BLAKE2b-256 b984adcf1be7449f2f7336ec879a7d19ecc74252d2b5a52d7e6e2ecb62312949

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a2bc8e3049b7280e1afdd4aaec50a2b91556b130618015c79ad554f95166babb
MD5 f7bd2a48fe582fa9a4b44c0afef6932f
BLAKE2b-256 8baaebe632f48fba5fae74c10d57553b0077bad2f589279999ad9e7e1696295d

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 155207e9f3d6758bac35ee3461b2f051821884d5bdebd4892b7979ed6ec2707a
MD5 ee143dad791703d97fe6a06b2306f65e
BLAKE2b-256 5571f8ce86197404f5808d5f08505d5219942e4c579dd74385ffe0c6c00780c1

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acce46596c64b6bc65188211d74f0325041aeda21b86dfd9c7ddd8b58438e631
MD5 a8c0060c9c31503045fb3d12d63088a1
BLAKE2b-256 8f15bed87893311f33fa128da8810f26e3d13d76fdcb799e6131333fc8bebb75

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 547b019bc9d99141b245bc50137220aa5304cc8b4e21bc870cf5176e4e7e35c1
MD5 f09e0e091bdca163a109a4a95e0cdb85
BLAKE2b-256 f0a27e36014af1af6cc74e14b8c995be1d7792d0235134e9dfd87e038c614e33

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 980e8f08fd228ebdb5b25681dc6b173e78ed7902bb8ae21e1e4d9051fd9e63c1
MD5 b5604895d5fc1d4344e1fb5f8395bdd2
BLAKE2b-256 2e24543df1f7311a9c28751499abe295bcb8bdb648c2fb840dbd0545978db280

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.1-cp310-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 520c0830b949d64190a519c7a75b9d4531fd65c50c4535c9bf31f3a720e54c67
MD5 d3d155ffe4f01ee9d4c32813214723e0
BLAKE2b-256 cc415584cb33041e25b6dd02128cdc0dee80cf16c9aee967bc4544e90f5c42b2

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcc6693ca2bb12b1ce052f53adcc0f00b9626861af22c9a46f8e414bd5ae2abb
MD5 27f3d5f9382d452e9469958bb006a94f
BLAKE2b-256 5e07db3cae584e9330c4add4cfe4df58aa638c26db1c7eeb68aa1accc049fccc

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d59ce06ab8d900db2b576460f3925e6df9ffcdef26cb74caa88214a5256e3ff3
MD5 6398bb11976cc49a18a4bd6cba73b9f8
BLAKE2b-256 de1ea9a6fe132a283241136c48b3d3ae1ad48f7e3ce9b936c465b91d6c000c9c

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d19392624e2f5055ecf7f806a1c76baf1e22dd672deb6f01f7ef56b73ef43457
MD5 c7169b869822d3fef37a5a43c6028a85
BLAKE2b-256 86066d98cd5e2f7227b33cd7f3c77252b7c3f84d8bae1238c9826c37052a1159

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 941b923432c73d2d5243c79b25f99fb04df8b8f4b427fa6e84573f747cc1af9e
MD5 c65803427a7e78f9c539fe92e897e401
BLAKE2b-256 c93b6c14e9387f13e212189da26841ed94b228c84481acd9651a5c1396664f71

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 47de4473ec7a9b6d08affb661530394ab3fae7f3bcec1831aca8fa266093c3f4
MD5 8129f4e6c2c7466a9952de27a2aca184
BLAKE2b-256 d62d175430721b27dd63685946071c48b62b20ae7380a10dc07bbd2ba1f7b49a

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 5c15ee1e9d8b1e0b7b40ec9b6e5a8d4be81b621fcff50d0a181c4789d46f8167
MD5 8f14bc8827c1457b276f0786112625b9
BLAKE2b-256 56c48b1ea3e5c3a6cb447ba20078e4428629cc8653ed7a9150a92f2039d6d82a

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.1-cp39-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 8190ea7e3b356f013ce2314ac4a904d3e45a65032b4ad5c633f4cb8f2b978b26
MD5 bea44cc2836eae7d995798c126b763e7
BLAKE2b-256 77b18e78424d7a328cf943af94b8fa641e1a7eecd34600ea4b5c7d0adc13e606

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf75055cf972c3dcd074d621a2c672ac58e7dd20749bfc9d1cac8fa3909885fa
MD5 8ccb26c38ff62afa35cdaecb2d75b967
BLAKE2b-256 57481ef79021aae8ebeb54169585cab895f272402f1e60f078dd020a9e8327d8

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 159e0d1114c0687ce7343dbf7aebbceb2483072d2c5dfe2f19575945cf6b8779
MD5 acacafbb32b75b7f00820460b32bf01c
BLAKE2b-256 3d6dfd97f4387f03b91aa540c15e0cdf9843b8f7042716d97290b09b6d5948a4

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4ded6148044c09b064f6e246e7d249749cf79d7b3665716f7f512dd68f0d0100
MD5 a190ceba445f985c653570c54fcb9ca3
BLAKE2b-256 b831161b00702613c37b9ae7dd69d77be8ae3100a53e588f544f7c296312be17

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d31b8eaeaab0c4fcedf99e440e3e19b4ca420d365928b964f2c46ae304b47022
MD5 5ee8fd720e505dc8a00cf0e991a4c820
BLAKE2b-256 53a23909602e9273d3c2b052eb65e53e756abcade160e9fbdb4052a050a27f6c

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 98a9b9afc4b234b1e911ec54cd4a88fdd5aa7ecf85b9149d0456b028ee03451b
MD5 dd2b137076ab15775446ac95640500cc
BLAKE2b-256 93ad9e039a69e30dc26655ffddc31049f780e045d5a0aae46209f902ea828b16

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 38dbd664abc656d52c19fcb392dd01c347318ebbc2bad4c73c338226be3b84f5
MD5 510be002e8a74c328ce37d897564e1db
BLAKE2b-256 182fdb3699b5a32d91f256a249b4fba0394271649f7276f474f7f64d490b896b

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.1-cp38-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 737a3c49376b15f8a9bf42e3849607565bbb89a5af16300a7e1413d0246beb9a
MD5 543bdd35a29623048863e0efd3435450
BLAKE2b-256 5d937ec77e89c2beea176e9d7fb150be7f3ef16b8ad716593eba7017233c6fd2

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4fc82f287aa5d9b9f2ddc60edcc097bcb86b42756e3c955295831e06031cef1a
MD5 4972507633e7881f39bdf37cd1c3e714
BLAKE2b-256 324a3374f351c40c72fa9c6866b2c1577657628cbcea7be4f943ef1583d63e65

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5eddeea07b9d57fdf535931b39310886023bde32df9c0116063f490bbdc1aeb9
MD5 12e4af1c0eda71868851eb1070045cd6
BLAKE2b-256 5a7cde812bba5d7efdb855c4636070b6fa5e85e0c96fa34a8623d0a752d46da1

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 db2731778f51346cbc9763f0ce55ba330981c60dea138df8a5a38175b10ae8ca
MD5 cfb78981f06680f4b6e4d92a54429546
BLAKE2b-256 212b76ce12c2917df7ef22373858c023d05df8f40e50ac5810918976ff4fef78

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 286c414e865762e7c150c90f2e207727254662bb1a108dc2fcb941d3ec14f2b9
MD5 6e099bf6fc5ef47bdfe63a2dc90adf03
BLAKE2b-256 cffbad14ed9f12f40c9dd6dde303ff4f3a805980363f50d0b649452ca1f7c28a

See more details on using hashes here.

File details

Details for the file functime-0.9.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 d0b66fa09fd970bc1cdf7e8e9994a8598506fb30b09e3dedb295e067325cafa3
MD5 9f247f3cfe589450123100cdb7270367
BLAKE2b-256 a40fd3fe81d2ae2a679e8653ffd75dfc5cd126fc109d1ac713961457d15b3b11

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page