Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polars as pl
import numpy as np
from functime.feature_extractors import FeatureExtractor, binned_entropy

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = binned_entropy(
    pl.Series(np.random.normal(0, 1, size=10)),
    bin_count=10
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        pl.col("value").ts.binned_entropy(bin_count=10),
        pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        pl.col("value").ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        pl.col(value_col).ts.binned_entropy(bin_count=10),
        pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        pl.col(value_col).ts.longest_streak_above_mean(),
    )
    .collect()
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .select(
        pl.col(value_col).ts.binned_entropy(bin_count=10),
        pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

functime-0.9.2.tar.gz (23.3 MB view details)

Uploaded Source

Built Distributions

functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp312-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.2-cp312-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.2-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

functime-0.9.2-cp312-cp312-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

functime-0.9.2-cp311-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.2-cp311-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.2-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.2-cp311-cp311-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

functime-0.9.2-cp310-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.2-cp310-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.2-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.2-cp310-cp310-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

functime-0.9.2-cp39-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.2-cp39-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.2-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.2-cp39-cp39-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

functime-0.9.2-cp38-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.2-cp38-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.2-cp38-cp38-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.2-cp38-cp38-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

File details

Details for the file functime-0.9.2.tar.gz.

File metadata

  • Download URL: functime-0.9.2.tar.gz
  • Upload date:
  • Size: 23.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2.tar.gz
Algorithm Hash digest
SHA256 0af41590a3fe1994db9708be5a2a14e794c5dada1e606d71c5d6cc51f1c81256
MD5 5d62de783d9c4fc80dc893cc0cb6f941
BLAKE2b-256 8e7bef4b20821c2aad6e3ead7bd791bd4d1405b1631e763348c997ba1348279f

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62dea6d8f80dd0dff278ce623bf4e947f5dbada79e95098373617b2319b69c43
MD5 f4d68b543f4792342cddfefec08f3c47
BLAKE2b-256 f4871b102374205252e4bbabeec328fc84d16b19a9a2d6fe3cd57d2072437968

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d54bfa5bb0f82c09255768939d515685e31dfe6294ec04876785c2e2830b977a
MD5 88a6fa566ff8fa3ea486eeb93eff3f18
BLAKE2b-256 1a3e2469917e9c553f5cb5dd718746d9ca462eee3311ce69a9ff16b4ff0b8e99

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 0f352619fd2bf39243be366af18efa1286b166d5719de3d143a14c2b76e65dd1
MD5 879e4df5a51273712d6facc20032a5ba
BLAKE2b-256 3e50c455d7967fb1bae9cdc2c2729aa3e612237af88de604e6ae4c69475a576a

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7f271076a5daa1fcbae2a088bf430ae627862484fc9d3b3e421ea42dc2e16b22
MD5 cdd8d1f986199f9aa98d073ad54b5d2e
BLAKE2b-256 d12ee739decc9fbfb0a04bd88df089fe6eea37c2d032903ba6a43d5f2bd8e4ef

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffff82db77feef65d3f0e2235d9244f8b86ba3399f394137ae1e506bc3568e3f
MD5 25955ebea44f0cddd53644566dc783a8
BLAKE2b-256 f62e31be012ddd19083b7ff4dd4a2fcb080e64880ca2a231bfbcfb143391d3e0

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e204abe7589db39216f411938403f9aa0dba4380d7e688fadf862cd0d0fb642b
MD5 e8e29c67ec0c812013036a1fd3a8df03
BLAKE2b-256 60ee33ce6f1abb99bf548e5be839c1bbd10b4e89bd4aacef5770bb3927c9fde0

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3628a31ffa263df2addde97cae6a26a40e5ca5661b7705619afebf58d40e0ab8
MD5 62a1622b339a067107ba2ed46d91298b
BLAKE2b-256 a9145194197e2a4fb1104fe5fd1ce65be55bd0096899593e3611e876c386cabe

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bafa4a49e98e4b0cc4fcc82f9ea5e70af5ff297a34ec9c4d181405064e3978f2
MD5 cb99b4c0d73584e211cd10f96538ad95
BLAKE2b-256 6a635f91133fbc717f8d4dd8e59a0a48a7048352098905c9b622b0c4aa7ebd19

See more details on using hashes here.

File details

Details for the file functime-0.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ce01213abd273d1405b59580d8e9f6dae7b49c02a2bc0560cb132b344799df4
MD5 b68060e39f203a097b3ebcd490d8abec
BLAKE2b-256 a14496bf8f89cff44325cd5c871817e9c6059749cb5c20308af3ceff64a9bd6b

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 711b1f7d1136029911398f831c07c3566a201b0412d95fac0cc418c123b5b7d8
MD5 b868f88bc83537eade80bcf9f080a857
BLAKE2b-256 f3838f87a517426e18121952bed4367911992522b47cf954fbdc37a32c76930f

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 5323d6e0c9593d1163cfb580eca4486615067c3d9c520e6f13e95ef3a8349933
MD5 7a2191b7c3896256981f1703139d9a5b
BLAKE2b-256 b95a0195aaf5bf9f5b4eb84acff02d9402b8ffe1ae389694e8c202a3feaa0533

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.2-cp312-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2-cp312-none-win32.whl
Algorithm Hash digest
SHA256 7a9f72689cfb646a8ffabb0d5c67d025685e3f0c4b3412730d6e545b624c18f0
MD5 891d7f74cd714aad6fe797b71d744794
BLAKE2b-256 7a7223fcb99977244a329aa938ebe6239e173ec500c2b0b530e8eb40fe66bff6

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5af29362f03b0284dc95ac92d73fe6859f18abab08396dbd147763716d4dff86
MD5 e3e6632d61c62aeca08bbed7be95af6c
BLAKE2b-256 eb0a725a936a8b0fe8ac0156cef2aa05d3738287b2255ba07343c87fa1faa82f

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 44e90f1115804b7797f53332358be86e83f6439f8be0a2d60a2e923696d27dc5
MD5 0ff50fc20954f65629bf4242a5012024
BLAKE2b-256 43695ee29ec50f32717da8d2f347f77d1c18a10dcb92d657598d295ced2eb890

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 66a84e889c381843a14eabe3ccc48dec4f4798d6d6e23e61599665cb95868664
MD5 6ee57c7a8fb105ef02617bab2ca73466
BLAKE2b-256 a36b9e7cd9e616b9c7f57896e3d1cbbbdcc846445ff88c1a9dbe355d4ae20de7

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b9673a1ca06ff8bb201b11bcaddac920210000a8d25e056d5250ed8d620ec10f
MD5 9f5705f25c8a13e9b2ba6fbcce3311c8
BLAKE2b-256 457e0f9b514d20632dfd21bbb3f82ca404b5954dc66b3104d3e6262c928b6c8e

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e171a3e9bf952670d9d508c56e53f90fa795f4178e0dfe2746f1e1ec7baed222
MD5 5c009d736c0be898686e02843d3720a2
BLAKE2b-256 695e1629d0a8e146cdadae0e534e8f1614957e282c44a301bb06f4fc19e4ba39

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 949fb8fb105147707b61b6c954bd62ffeb233b899c6d5d65c0934131278099a7
MD5 fd1fc6c6762946d625a7814d67f12876
BLAKE2b-256 bda3a6862b2fd4ae08f38e9e74b041995a8c34415bc1fa25afceb951397529ac

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.2-cp311-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 0c1a1e317c669ee4eab7b5763afb57d2f5498b0efa8d9297575da7153a9e72b2
MD5 ca0abc72c39523580184c94fcb3e7c50
BLAKE2b-256 8b5844c767d515b53a8b2f664c134d4840da2caa9c8c16ec5b7272225850651e

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f057c046f22e429bd854495f60a18b65e80cd94d500a8cb0709c5d6d7e271d4a
MD5 2b9839d76757e33c0a0458ba9a628563
BLAKE2b-256 5364665cb9f84741b7466fa88e31f4d08b926dc71b59d0b7aaa1df2205a85f73

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13aac7a2809022e646459edff53adf9b15995e5a809732b8d0af188a5c45a938
MD5 c626b08cbb06cc27ad680caea3c6e3c8
BLAKE2b-256 bda031087b368becfa4eeeb7044b6acdd5449ce307c96a9ac1493ee17a0e25c3

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 f1788189b064ee9f00dbf13b4eb4c6311b7420c85e192beea243938d0bd492bb
MD5 dfec10b622522ee2cb4ded94f28a619f
BLAKE2b-256 f8aaaa94a56fb9afd4ae470541e60b6f4c4d3d9f8de31c8efda7e7d1e3502c7d

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea82967bc5b4217a51dc930bd6187c72180d700c30a1f20eee812b38880a71bd
MD5 46490441c981f932b3b9fabe96c6dad9
BLAKE2b-256 fe1f8c104290cb87ebc6b99c965501e7cd548164a81ab664574869b22a99b564

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 884e454c5fc8b357cceb82eeb9d70fb58b789eaccb8e265d9daa94d293cfa832
MD5 03622f0d4f693165a2d497729dcf79a9
BLAKE2b-256 0c933829b1aa99570897e638328a4f8128b6cbeb60cfaa988e926424a03bd2a6

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 f572fd6406575b7aca7a737357edd815fc19529e4104bbf40d1ef03e1eb5f240
MD5 9f2070e7f3856b0cec6325ee92f7437e
BLAKE2b-256 f0dbec9132e49437057e8bc3cce4f46ed7d7d8a3aa0a30af6b42e9418e00904a

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.2-cp310-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 556b1b4d17c4418a1e0470557f38b9a4dda7436307d4fbba883da6d0eb5de826
MD5 68f45f5705160af1c0068b2ab07495d5
BLAKE2b-256 d3a7a45b8ca62cc6ef337c8da1bbf31cc105972190f41d393e330cad4f2bacda

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 efb3d8d817fd0e9fee5e740e24608a96119ee0be56ea408eba96d08a2d242875
MD5 4853d913c066f6ed164dcef3231222bb
BLAKE2b-256 8a0693c1fdbc7d01c51f76b681041383ebcbe5f11966932dd71235180aa03dde

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad92e71c446f68ff1b4a486a8080bbd93f2a0d8156c70447f33ac60e8c8230b7
MD5 32f19917bcd4e5463ac84dc9bd9747a4
BLAKE2b-256 fecc489c263312fb58bd59cbbfef8426601ba51e66d32f94031ddcd43d3a8334

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c685fe2730e3125b14f7e06bb1370144b475d8a34bb2e7a33352711a11b8c3b7
MD5 3487f01c8f41ce6b7e4d15c64e50138e
BLAKE2b-256 0d4ef9fa959caabf2531ad85b3be2b26590d30ad2b83d25818c8f9671818b177

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 15466ca7f8714f059015efc9c1c689f02610040c1219e6c681d5dfc4306ffd34
MD5 48ad03774653af68ea90c66b09f536db
BLAKE2b-256 6c980e5165050050d7a3518ef1cd299e7d304b36faa55d4994fd84d087bbbf81

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6c7134effa81487f55412e4a151930172edb63943e3781a19047a908f616138b
MD5 cf2f1d797e799522dc202a15507c5ee1
BLAKE2b-256 03ae2587689d5108c7d5ba506f5e389112b33e314a391954df700c89d2b48072

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 f474b47fee8f072d25f8d732b7a1bacb0c0bd41e2d8ca308bac7648eb3f0cc78
MD5 575a9824969e9b109e4a1bed9dd48540
BLAKE2b-256 d3aeab9f28ef85e1695b75b20ca0e01da4079820078ecd05ca4382b131e22894

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.2-cp39-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 1b6fd87c5b5336ad9cd59edf53383cf8ebce8b4ed5471dc17ea5e424e0e7c4ed
MD5 29a536bebb93ced5cf0d71b0ba461d1b
BLAKE2b-256 893a376d26cddc76dccf57073efefdd1ec5db4c9f64b962b8e2fa9f52807592c

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e30910c917635214d2033b6f3e0e261baa4109c6b90997fcd1001c4620f6e648
MD5 6c15da319af5eb3cb20bf05698c88da3
BLAKE2b-256 b3bf891c0ddd2ae77e76109d80d28ab832e3bb700d3cecfd000bd887c8e4a4f9

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee287bd2f8b213dd620d0893c36c92e28b04c488407abce648c1351cd229b16d
MD5 c204d51a4c324a597be4958826e2964e
BLAKE2b-256 fcf0ec5386e6298344363f3c28ae475c44ab3c2c90614ea35561e4676f6a9b2e

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2bfa49ccb8a5cb5b54d207492623574dcf8c887327b5e94fcabf0e057f618958
MD5 b10b8c51f3f1cf3a99e3b9b1c4a23f7b
BLAKE2b-256 77e304d69988601b9f342e42a4baa7528921604fe1a79ed56b5024f3f03b89a9

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 721c0727660d70b714d5fc635c9f2195226f96a104423543df2e4154a8088a38
MD5 8a879c3a510e91703bb5ce6368d6f6df
BLAKE2b-256 abd3536c49e07f10504b423a2f72195a5a1a424187ca8dec488e97d929081d7e

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9e7fa9e517c7a899c508d9fa3f9e886bb96c52db1c18ff455d7a347013ca46a2
MD5 1525395c0c7c45afba83c01629cb8c5b
BLAKE2b-256 33c29ca8597045d82d4c08e20c85367c1551705dea4baed2243f5a0d8c0df6bf

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 8707b29f49b747809d9947ef3d8396c9d734c0282fe4da332eb71a8d96dd1a63
MD5 fdebae1a24e61df037de56979c297af0
BLAKE2b-256 13897547d6a73a0a753539515108a1d38da0f3260ceafd7af7280f397f35d256

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.2-cp38-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.3.2

File hashes

Hashes for functime-0.9.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 f0df52a8209a87b117752b23ffed09703794455efd2348c73f99b656bed516ae
MD5 36517abc9360adb6eb13e27aef355fab
BLAKE2b-256 a6e0a8006e0f8c7b80abeb413207d3f996214494792fb0e6bd8ca763eda7d745

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e930139a5ce5e69b422837776d74835444b25df71c4bb3a3c2222387282e1ba7
MD5 735f53def8b3e553574399797d2b1c61
BLAKE2b-256 961573734617db8afc5d7aa300c33baa62ff6273808060d972d585c6aca7cc48

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7451224e4291a081ac8fb7903cf94d4ac415b8f9d84cfedf91aab064dddad459
MD5 9925a65c23fa8d883f58a80b10281ab7
BLAKE2b-256 c07ccdeb9913e3a67c4062f71a645b96a86ddcc4a89198449774ef8caa974ec5

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 8ec1c603615b9090cdfd4b842666603155f2f5f2c853609c718d18a7834c00a7
MD5 ed161e778f6fd5ea1e6835e653ffbd08
BLAKE2b-256 1e03d422928b56a8d7a62fd44cf68e8eadf5a11a8d3db8863b8b7010b9006ae7

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 678924b71497cb20508d4328d92f88cfebac92b4989e5cccd14db19dd3326be8
MD5 11ba08fff536e1809052bc054b20313a
BLAKE2b-256 84064c621a797715b50a9c4f0cdb5fee49008439dce05b660878d47d23f62e0d

See more details on using hashes here.

File details

Details for the file functime-0.9.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 62adad8efa1eec942f0a474765775aacfc47bb83027228cb0e7c7e410f32a04f
MD5 ec1a0b30bb27c2ba4c1ec2cfea4b2f56
BLAKE2b-256 83237ddc252faa967517830c8bf60d24a835232237891095efa51a6d647b139a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page