Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polars as pl
import numpy as np
from functime.feature_extractors import FeatureExtractor, binned_entropy

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = binned_entropy(
    pl.Series(np.random.normal(0, 1, size=10)),
    bin_count=10
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        binned_entropy=pl.col("value").ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col("value").ts.longest_streak_above_mean(),
    )
    .collect()
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

functime-0.9.3.tar.gz (23.3 MB view details)

Uploaded Source

Built Distributions

functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp312-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.3-cp312-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.3-cp312-cp312-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

functime-0.9.3-cp312-cp312-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

functime-0.9.3-cp312-cp312-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

functime-0.9.3-cp311-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.3-cp311-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.3-cp311-cp311-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.3-cp311-cp311-macosx_10_12_x86_64.whl (3.8 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

functime-0.9.3-cp311-cp311-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

functime-0.9.3-cp310-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.3-cp310-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.3-cp310-cp310-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.3-cp310-cp310-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

functime-0.9.3-cp39-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.3-cp39-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.3-cp39-cp39-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.3-cp39-cp39-macosx_10_7_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

functime-0.9.3-cp38-none-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.3-cp38-none-win32.whl (3.1 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.3-cp38-cp38-macosx_11_0_arm64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.3-cp38-cp38-macosx_10_7_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

File details

Details for the file functime-0.9.3.tar.gz.

File metadata

  • Download URL: functime-0.9.3.tar.gz
  • Upload date:
  • Size: 23.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3.tar.gz
Algorithm Hash digest
SHA256 b1d6e5aeb6e06833db8c9d3173add95a0b220c84d8026f0c4bf3c9eabe11ca60
MD5 0c5e7be393c9ac640b71fac5e2988f2c
BLAKE2b-256 e0eef1af9d3f92891ec32bd6eaf6646f2055acb0ade7c855587909a4a54917a2

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4e15c7c949661fd1d09448850a7d611cadb55c20df131ffd368341a2646df716
MD5 ff7d24733b878d3ddb0711c7ca9b3458
BLAKE2b-256 4bff8ce20bfe2ebdf865a7f0d6294bf86b8ef4c34aa27161029a100d7bd121bc

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 47ef264d7ac945e5c809ec63448c7a4b8d8c4df098b330d8a196b419ac7ffdf6
MD5 dd73d22439b4ebf971f0fcc8fae469e8
BLAKE2b-256 fe722b458abda90ef0e4281686547f056c429a9c0bc02f5b6b851a5e5db7aa48

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d352e46a4a6fa7b1129eee7374bb18964dc946a6208237464b7286c7e92080cf
MD5 746e484db51b760afcce8a0fe39316a8
BLAKE2b-256 0ba59cfa65bb135abb2db1b88e2003567de45f9bf0964a54377e3fb542be2dfe

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c14ba6df3957a3c8603e95733f38aafdc9651712818233f3c0bc6e4bf2ab6ab9
MD5 5f2bf4f4e04208441a11d4a7d5e09f40
BLAKE2b-256 a2c59f01647ebaeff33536effdaec5c109acda6cf03627f4e6171397c9e3e0f8

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 203aae1e30a5aa693615b16bf7be9df4d9fc8664bbe362fe3e3a091b631eb7c3
MD5 bf0383808ba76146f2e333e9a1854b67
BLAKE2b-256 7726a9d949baf477804d55aa905bf1639edebd706594a66fafc932f6eb646518

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 d220ecfdf03e9d1c651365429ed4d71ded658bf23ecc600a1b0121e42bdb17c7
MD5 7e717451bd251aa726de1708df317d6e
BLAKE2b-256 7502626979d894c08d33735c6087e6c38c5ccc8d671138a2d1c5befb0889015e

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faa50d5c42c6b91d3e4b75a196704ad2d10bc3d6f58d9748723a84255f494568
MD5 de449447ee7c08bd92fba22b3e7d26d6
BLAKE2b-256 54d46f13edcc1bcf3b5527052b4862e584e90b82f545e8b3795df0bab42a8225

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74ac9badc8ab524a8ad058913178e14c975743d0c4716b66d1792e2a3a8cbd1f
MD5 ca29901dfed9974b6fd8b622b4dc9c5e
BLAKE2b-256 b19432c3eaf0fcdfab9f58b32fce1ce783180a8e500b1585b9b22ba1821e1c24

See more details on using hashes here.

File details

Details for the file functime-0.9.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 db3ef11c99c7f504e980c4eb4b4e723bb3e1148d12367d4fbfe405e082e95220
MD5 4ddefce0334e41eb645505bc4bac9be0
BLAKE2b-256 ae3ed083c40ad3428fc4857ec293e5e6fa6b2a226751b0d2a6eb95f7bae5b191

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 912d7db330b0c13be8c1f0d173b8bbb22dfd6ff9398dff2cb2dc69b1e9fe126c
MD5 0704186ab20290404fb049e4fc32fb7a
BLAKE2b-256 d788bef13993e44dcdecff2d37bff4a4d7727a02614f0294aedee80ec2a87621

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 b5c4e0d092b7ef8d24ed63b637118acf8e0d6d3fdcf492a730a38a3ee2ff8ea7
MD5 1737cc1864e58c332a628193df216212
BLAKE2b-256 485f4de6c64096bf181d835cfd27b234067f20559e9cb203249c03508da8fac4

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.3-cp312-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3-cp312-none-win32.whl
Algorithm Hash digest
SHA256 3dfde1e0e926533e93af31a4358954c0d3b2acc6f473c724817ec41e3ed8743c
MD5 305655d0e5f07fa08f1f68c7387814a5
BLAKE2b-256 a4edb28337dc7dc877993f39f14a134072111831f6307048d9fa849595ad116b

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 302b0df85f84431fcca3a2a2cb3e23b520c768c512fe2bfb24b06508ee96b11f
MD5 0839163130e0fb008d89f86548e32bde
BLAKE2b-256 a912fd5fe30f6a26c53dbf0f5da2461fac21328cf7eb240c4eea745539fd2fe9

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d384289a3e9ebfcd65fd666594e86ae3c5442a4bb0a455cb3faba545ee6847b2
MD5 b527378bf05a39643b3da36f2a3ca4f1
BLAKE2b-256 c196560bc70545eaf90f4a459d2aa00840969ff54439f2faa7773a0f180afda5

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 62f8932bf56c1f7ba9a71a7f9871ff1eb1fa932681dadd9835aeb31e8501fbfc
MD5 d179dc828100b1b55ebfc23d974c4e04
BLAKE2b-256 d5c6a39e35d9f553d3673e67d31ab5acfb224ef7b96f69d3982a9187e34c464d

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6aef9a31a7f138828573e2c5b8d48d5875222a5f5b3acfd8ade9ddc82ae01eb4
MD5 8b067f1047251d5b625d9fa028858477
BLAKE2b-256 a23c6fcc049b9f01ec84bf1a1c1651e55b7de7dd86963ca2160e6ad8adb84af0

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e3f3423af2ff12ce6ea531d74003f8e8baaffe552195b2cc920d4dec6e1e2861
MD5 77b7a40c3bd1846c31e023e1bb51cdb9
BLAKE2b-256 330c293d61954e3f33985bcf21785104f7dbcdc98e44ab6601e231df452dc9b9

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 4aff549f8847b8648de86716825c3bc20c37289530c64ea9c31499cdd2c7bd4c
MD5 5ae63d2b7e230fd2520ac9d87155b4d5
BLAKE2b-256 d9ef72a48d67a4f20a7b4e45048b5ba088f79ef710ca0eca92a032fe5bce3f01

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 e16da826cf695dfe7f75b66f41d170d96b5b765ef642540eae7d17e04211cce0
MD5 89de67bf81a99900f7b00c5b5a933926
BLAKE2b-256 0c13cc2d8be74a836868ea92b980a8ff6741c89dda76bc6c1a56862e6bfa13c6

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.3-cp311-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3-cp311-none-win32.whl
Algorithm Hash digest
SHA256 d28e02d97f1773282dc07cfe06e0b0b806357a2821be9d2dd52aab1c0bcce5db
MD5 671db205a9b9809367ccff5ac5fec307
BLAKE2b-256 44b9a55110648810a2e0185920b744b4988bf881fd646878ce46f6e2a90c0d16

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9948b79eb25d85b44efaf66c53846eaf28ca3b5a2a9c533078b7de7384ba8f3e
MD5 3b0d6bcbc2c1354fd5ad74a42275e862
BLAKE2b-256 4075f3b9b9061d70db6b756082f339c02f8174826db2c94d8e26589f4d643277

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f373c12d522d3db6fa55f807984c073b2ae43f5f8bacefdee1807e4d7a6384ea
MD5 fba923a6bce7c51b636d864766cb4ed1
BLAKE2b-256 93842b5467dede871e14f6618c3cb0a798abd462865bd9893c39eb59fa83b97f

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 b7b26aabe3f85694f856734f3267f1116a62fcfbd7f9dd7d09148fde9d60a6b5
MD5 d4c26f30351e1441c98ff7bd12196550
BLAKE2b-256 ab0971409e06ff793a4ce77650a539679c3feb113b1c3b188d129c7072e0ef1c

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ee847778c1613c536027b18ce360e3682a239f2a1381e8fe1caf040c5a86ec24
MD5 232b611ea97f2cffdcc384a30dbd78ae
BLAKE2b-256 887e70924072a2a161aef80ad00686d85e40affdaaec1852e1ebf29c9ae29589

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f52f9f35d75b4e751a6fc47ad7d2abf29234d45d9015e8be35cea289db9b21e8
MD5 a029b136664a910c4b3c4b3d36f4a401
BLAKE2b-256 e8f32dabc29762bb7a265f28e18f56674e7abeb4b8bbee31938c7ab7b7de0d7e

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 7b8c0bbf7be19272872abe51c8a34dfd5f070c55e1634c38a198a579b243d190
MD5 25a798946d9f659150ef91df2c47e72e
BLAKE2b-256 1cc6ef88543ae8079405723f9d1c38cb8f0c3446d6621463cf9479963e400077

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 7a372d2f26e8867a002463e88bf68256edd8920e57f5157354d1bb899381c552
MD5 6b869ae5825067c706ca72296e3b60d6
BLAKE2b-256 7b1119cada7bddd152b9d9c925df7a9b6f1b3f1cda066f255f17ac27b61f0fe0

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.3-cp310-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3-cp310-none-win32.whl
Algorithm Hash digest
SHA256 3494e7f5985d0b1d80e5295b0a5f89510fbdd8d5edb5c71037db758136d217b4
MD5 e8f18593de86a1a92e4d706491485638
BLAKE2b-256 4695adabe31f94773d5ad0dae4078feb3591b8a18162d15288c63a771da6423a

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d515fe3ad2989b5accbb4cfc06652d8dc1268d71faba455412593983cc260325
MD5 e00b087554e52885d781f168bb69cfc1
BLAKE2b-256 1e8fbbfaa09e8bc5c254a9bbe4590139580207af1f9d0e92482e044d637d9fdb

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 eb2017b0c1cdcf52a5daad1f5902ab7e33bfac86f6f72abad5faf4eecb5237d0
MD5 0ee42dbb7acb92cd73fe1c29406df6a0
BLAKE2b-256 25b3a1bb3dc245bd8f5a3d91dc1e07c89f4a7f3aadf6b7e5651508326491649e

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e25d80f67d14a21d6ffaff88676bf5ebc609f89a5d9a6be35fabf61bec6a2f9e
MD5 f279812e344b8ad9380914066d2386db
BLAKE2b-256 920513a238c64af2a3af173fba45fe6d6e41cf2a2f54a6737d4901e7ab3ea5fc

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 91916089029d718f0c4e884552460a22d6504dcbc99b10023ba81861475e9215
MD5 4cebb195fb85d87f90ea880964b7f6dd
BLAKE2b-256 ea97c02fd956abc67beadd361234bbdd3fe542b33898a60221fafc81ebd196e0

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 0f301f39b7e2f4116633c588d5db572f4817f9810d37519833b8bbbfb5db004e
MD5 a4a7891d501ebc246f0f31d60f6b3ac1
BLAKE2b-256 10749cb16f66c6137aa0a4c14cee87fdf6a58e42ff8170f6bad70d7df789d34e

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 f536dcae5078821a8f5f5a14d527ccb75287d08ea92d7d6931bf7f0022cdd5c5
MD5 4b2126c2db16f64d57f465bb7b48178c
BLAKE2b-256 747b531ddf6cd767d95f41a80b13f295333568b6bbeb74f7ae1fbc049a2bb647

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.3-cp39-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3-cp39-none-win32.whl
Algorithm Hash digest
SHA256 f2c4fcd61f5f11bc8f07faebabb658a06a8dbbc1616dc48929ac17e38dd1c281
MD5 6245e2a282343a541028697ad94ca5bf
BLAKE2b-256 c6ed819802242b88ff328eed5fc68b0139bae74055a3a1192fc11efbd7cb65f2

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 415df8b881d3baa1387fdcb438cf33a64bbbfa952e5519b16d2c951b1971dcd9
MD5 573d3be8966d81295be8ca34856a090f
BLAKE2b-256 3eb21f227d5be6c4212d7c11d78188c030a5534778e924e3b6752eccb10c8a9a

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a77533ee57ee2fd82ec824964eea7585c71c321e035163deb7ad5427262c2a1f
MD5 a1fc7d289ce57dede49b981745036c08
BLAKE2b-256 892ab999ac346d0f7c7809f95829d8aced3e4825b9a834686021788f5d606f31

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aedcafc9edd51e08f813c5f2b115948e1711b982376ebe5b694e73efeeee7314
MD5 ee009904bc70c897c9c37ebc5816355a
BLAKE2b-256 71d5bbf7b631ce04c032c3fd43d8c7091006ed051de5c7be5c4bc386843f5310

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c11655db671083e365c433767e08d67e3f1b06396c6506bacca9e47dee3eb28
MD5 f42b77cc39b3ba516f7caf830526fd5d
BLAKE2b-256 55f5a52e19fca6530f97ed8c5003e9073ba0ebf6daf4b72d542bfda21670cad3

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 c05fafe16999262a5f4a26ca2ffc051c85faf23179838ded0b5f786dbfc8b0f6
MD5 218d7222ee77ec0411bf43e4192e4aac
BLAKE2b-256 63ead840104b40332401f22ae49e3674a12be1a829e5d1a05bc194b8575349dd

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 3b83976f1d77d1564b10edb7ac65bbcb7b5b3b44705672b284ea677148e2822d
MD5 0ec0bb7ed3c047cb39fc2b3c776fb380
BLAKE2b-256 c4075e7b23a4c8c355154c9e80249a171597dcc579b42465368745e29a436b39

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.3-cp38-none-win32.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.3-cp38-none-win32.whl
Algorithm Hash digest
SHA256 902deb2307706ea0492dc224a60c1c5b95a070802130e2b22c7944ac4c8df645
MD5 47a1926bcb3be271ebdf306a1a97c01e
BLAKE2b-256 0bab23c24f98cd6a8fa416f00da8a58d882d9dce9f3f127954ab86034c98b72c

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 034bea8f96687724167b88f24aff9fd00dad65236182d39cc95e98b26e08b36c
MD5 524f55dd7b48cbe66db075129958e5c1
BLAKE2b-256 3577d3fda278a481391d37ad92ba8b157d2e049fc711e77b0a8b59f414bbbdc4

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2748801509670e27dff51967326ef8fbeeb824ee2c606d4e2e94830e6122dd72
MD5 e0a8c54d637cdaa91c6470601682950f
BLAKE2b-256 8a3e22be511e24841fd5c1d45284ac7a961d1f4e54740b638d1a517b5c429572

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a366d9156ed9011488809a126322795dc2d1781203e95d34e7cffa5468a49723
MD5 e24fe5c560ff88f78072f2862ef0ee6f
BLAKE2b-256 ca1430837bf6cdf32d8ff00207c577233a8308bf59994b45c9a7bac8e7198e4a

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 06419ebb907391190ae0bcb09e709332884606686558781857858f83a5d5e4ce
MD5 9b819e0729b249be85653d8fbacc06fd
BLAKE2b-256 cad53e25b04aefde06274fae489e10d4897b6f4e89a4117d2579099954f2f537

See more details on using hashes here.

File details

Details for the file functime-0.9.3-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.3-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f59040ef03b142856717ba8a7fe8668c3f9921c6168a9e3db6099f0f60ca0ebd
MD5 3e3b13c3b583780d2c7ed19d00242e7b
BLAKE2b-256 a01ddf8699ce581cb463a09d00b9bdf5bf1f913eec43ae71ae794674c4e2e007

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page