Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polars as pl
import numpy as np
from functime.feature_extractors import FeatureExtractor, binned_entropy

# Load commodities price data
y = pl.read_parquet("https://github.com/TracecatHQ/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = binned_entropy(
    pl.Series(np.random.normal(0, 1, size=10)),
    bin_count=10
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        binned_entropy=pl.col("value").ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col("value").ts.longest_streak_above_mean(),
    )
    .collect()
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp312-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.4-cp312-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.4-cp312-cp312-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

functime-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

functime-0.9.4-cp311-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.4-cp311-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.4-cp311-cp311-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

functime-0.9.4-cp310-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.4-cp310-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.4-cp310-cp310-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

functime-0.9.4-cp39-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.4-cp39-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.4-cp39-cp39-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.4-cp39-cp39-macosx_10_12_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

functime-0.9.4-cp38-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.4-cp38-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (6.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.4-cp38-cp38-macosx_11_0_arm64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.4-cp38-cp38-macosx_10_12_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c117555f4b1ceebb4e221fb6564c75210545aaa72a3b113c37b3191ebf0bfbb0
MD5 bacfe36e75477c0b1f5246dc59ba2b9e
BLAKE2b-256 8a5962b34bcbe579cb79fcd3fb47642d67e8eeaa386c008e7456cdd42a987181

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5dc910be4f6673255bae703f36edcefdcc47067a46f17fd484533da8a8cfe273
MD5 516feb4a81e286068a0492e21a11430b
BLAKE2b-256 f411bea7235d0c04b41baf6989e3bea4865b831a3b623f2e1aa1ecea8f6ce7dc

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 56702033a5748df72ec42bb46bcd0d50481e729cf8a6f743c37b520dd87ab293
MD5 2fb38ab09584251b11b7f66abbcc61bb
BLAKE2b-256 7cf28529f2e7da5c31003db79a575869a8698a80b4c0143a93fdcf007d74a0a6

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b2d6f47d2a24e2887b40c879a1ca14f1a3e0920bd76b27cc10ea30b41c78ab7a
MD5 2fe1ad9da20e27821eb12a59fa70c1ec
BLAKE2b-256 09d003220c95304ac4d0958fdc025651f657d05b002f547b6634204894354ff9

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 458a5df7a337a7576c99cf8a6e8490dc16035ce8394b688d253fa58a3967cfbf
MD5 51ea0240c8610d19a44853b4d55a9a91
BLAKE2b-256 53daa9414e86bb78f8cb54fecabf07ff08e5988d50adc6e889b8d98831ec9bd3

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 58865d5ea50c825ad6f8b9d90692382d59121543b2a0aca44682967df957540e
MD5 5bedc57ad4e04964561879540f2aae08
BLAKE2b-256 35ea0360d21b888be024d3b448e0b1d483afa3e5f6d4417a225980a939387dfc

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 50fe5cb906b434a71e5287df74763564fc39ccdaf96ef79e03ece3259f04bdc9
MD5 3277148593d35dd31e45ccc6c05a33a6
BLAKE2b-256 75cf154a233cbc8509980bdb16ca56d5dab36e49d21c5f824a5f11494292fafa

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3db4ce34ef58e87713bb0171448a88118a9b6ae49f74bcb731902fa0b9461896
MD5 c149322371d01d4f2a1cb9f389b6a5be
BLAKE2b-256 67588cb23695b3fdf57e95922f7bee0951d5570975920621185c44893e1450a5

See more details on using hashes here.

File details

Details for the file functime-0.9.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 db813116f28f3e146d547bb9654707397a36683538e6b328fb3d49ad3fe5ffb6
MD5 15d3e795ba8741314c2956426f800357
BLAKE2b-256 3ef6664b70d09f4919816ac635228fc1cb9e8d610e42868c8a6b5708581ddeab

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 40884508c974a34196ec0457ec4e62fdd51fcf2be47ce12ee95b93c7f6479804
MD5 4b2d50ddee566acdbeff6ec283e3016a
BLAKE2b-256 8b058f09199a8326a0a82810779ca1e7437f6e1bb7cb0ef2d353bd69c43fd2f7

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 6d9182bfc7253ab8ede5dfe30904117f6d696216401ed202774fa23931553c20
MD5 488bebc594da106bed7155cba52f1c34
BLAKE2b-256 245a9e25597ac2384abe1ffa1a14e2d46adc68e57fec09e56023fa0feca99efb

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.4-cp312-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.4-cp312-none-win32.whl
Algorithm Hash digest
SHA256 43e386537ab735cc71403e30bbef394da121c9d05d3c7553bf8f70d08b88c8b4
MD5 f496927b82ecfe48ea491fd173305449
BLAKE2b-256 030ee5881f9d8c428323378c99a02d1f01ba73ef59df03a23027212373c0ace9

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57e31ee1db71053e4e5113a06a4f16e1c270ea82b5134c9f4cb5205c6fe7ef82
MD5 c5722ff13aa85cb89c26dc6d69c9b55e
BLAKE2b-256 329c51ef62087d3e664cb0f92ca4884102042588c1caa358a6abee62d5fbf510

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 911083a846b5b68d2f0d389fc4a5565f95ef978b0ec027de4fc0d9bf2cc2c0ca
MD5 4286bef4f2d0d4a0d7a4b240e265f6f0
BLAKE2b-256 988cafb10f2ee822c5aeb6c49c9c5ab32edfd868376ced3d49ecdfb5d08e80f4

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 5b41101e6dcde5d315619d45067552f38feb368f854059444c429792121f3bcf
MD5 697819624c8237c2176a5894ffee3132
BLAKE2b-256 5fe1a152269ab9ff240faced179a579a52085324961f78c97bd2d312c5bf2963

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec9b40132163fabf5e40dadaf40f1280650c6226153aebe3b80a1dc05f3f353b
MD5 fc5e9684c40311cd0138669747abbc6d
BLAKE2b-256 85f665febbfe921958df80741dcacc01ccc6c78b8366e73b1882bcd4dd8bd8ad

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 e35720267ba0b6683517d645788baf14eeb8b7a6fec6a18dc4d7fe4da172a0bf
MD5 1cbee21c0b826712ad234a64656364f7
BLAKE2b-256 de504f6f2aebab0d9778754752f4a8c365188a8ab66b3e3e46333f07aa0063c0

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 b7b79f25f1b403cc6043fcfbcd8e9be7b8084e26fba5abcc64983dd5c1de6b77
MD5 21fdf2e746516ea007f81b65ca986657
BLAKE2b-256 ec6e30189434125b363c7352bc87ea09464b195f65aeee933576a644b7f94a8d

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.4-cp311-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.4-cp311-none-win32.whl
Algorithm Hash digest
SHA256 01f6052eb6ee18032af471b3e4a21919b55f2fc2ad4811d080b4e5d64349bf0b
MD5 e4002abd5f6b213154c807c7d3101f44
BLAKE2b-256 fe5f0ea2f79eb6aa07c690633a0def17bae562da6b975a76bd9e0a69eeb88c84

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 370487e0623edfea97abad63b900cd398bc15e87168a31e07945f516e80101ec
MD5 1bc1adaaf0122845546f3fe0c8f8c89b
BLAKE2b-256 b523ae78e1754e2426c78b7547d93fe8f65810496206ba3aa017182bb91c49ce

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54fe0cfebdeda1ee5863068450028648e13a94fa88bfc1e72dd236f693f71a68
MD5 5abccc0ce5ea7efa827f723f90e8d09c
BLAKE2b-256 4e278875b2d46d2097f4515f37f9cb6f0d68a397858a3bb1065a4235dee8fef6

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 86809b13fe44e1260dc841a3f39822b73373437ddd10a416c08fe8579744d421
MD5 39948b90d581ec4d96850f189eddd667
BLAKE2b-256 1841491744580c4deb4455b5f8dfe4742c48da3718684ff6dd9571dd0bc8e938

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb50f2401f3b2b9a2118dee24e9d3bd6a496e7f335e3484db18ef2bd91ccecc9
MD5 40875c947d92136fd6385b2f78cba99c
BLAKE2b-256 cdf79134c194f753bf83a8b14e3fc125c7455b4de1a68de92c00fd5fb0474ecc

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 09f3241bffa7bae7ee45e64cfbe2b214f0e4786395cfd4c3d4bc814722651081
MD5 1850b61e6a008901912c78c77ac8bd5b
BLAKE2b-256 73388b20e5f738f7097bdcb85915869c23298317dfe9bae5b7ec987e16e31a06

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 3f5186424a3a76f53298d07de3161ab626753d6092eab78373b9a43776e1cf59
MD5 7de79ec9037271ce1edb451ba1bdb305
BLAKE2b-256 081635bae56ca2cd3bd7adc46aeba0de171f53800b34473ea20d5f7b25d3c1d9

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.4-cp310-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.4-cp310-none-win32.whl
Algorithm Hash digest
SHA256 de44be1add8680cd4dcac84c7006ef6c95d766cfaf7963775b0a6547f869f9e6
MD5 31626be279304b9b608a0c417187fe5c
BLAKE2b-256 605b0d2b884d2c43bd553426a5375319f29b47ed3f4d91d76be82354cbccec22

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 22140526733ea09f48f24db23e1ef714ddaeb6f38740b8dbeb475d61cb56578c
MD5 beeeef1a8683b27c692edbd051168cd0
BLAKE2b-256 754f030f6bc2f6e6eb41853eb16cf7b0fa103f02b1941dad8111f490372754f5

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc535765825746f6c52d126bcc3e6e0c71af1e2dec8688880aeb74897b842dc9
MD5 7159431eb51bb8ffa810daf9a83f1b9c
BLAKE2b-256 a36d5c7b39bd870094cea3365db3d873788cd1f691f69504606ce8e24bc75020

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 efc8e1ef9301891c983aed8820d5f89c4afed68c55ff272210574b824c370736
MD5 0c2e440e372de4956d58d2e76959d2e0
BLAKE2b-256 44653afb58dc714a8bd3b02ea08ad70e9485b41ed3477641b8e14bebe5315a97

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 985a5bd66c32fea09e031cf5b15117a88d8f5b03dd705ba86d5e4943b6b90e9d
MD5 4c8068e85e469d120dc37d7786da18db
BLAKE2b-256 bf633f484848d0e906b16c5c205a5af195ab92e59556b02791e33a57111cc845

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a4878306c31a785b3405d486865654106afc759aed3000f38e128bdbdfb0dc4e
MD5 78582e752c7cbce75d714e9f53f4cb5a
BLAKE2b-256 be199b53c56074f41e3627cd9015d5e7b3c4f0c608c555d8de028b6bd9b1b27b

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 17042909481ef5b51d0cbfc982f80a4612980722f5903113f6ed3701f31d0531
MD5 321fdc5021702eb4d700c4d0bdfaacdf
BLAKE2b-256 0201aaaa0400b7ecab63ed92c0d4df0db202041eb889d79b8b89fde9ccab5aa5

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.4-cp39-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.4-cp39-none-win32.whl
Algorithm Hash digest
SHA256 251f7481efd3d0281a48180c10ecda14d019b6616354fd8083bd4d202c9542b6
MD5 1e48211cd8cf4188e97570e2444a8b9f
BLAKE2b-256 4cc1517ab36ceaf5b0eaf2351f64961cbe189c642b9d2e48802ab4ac88486a26

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7491420638ef97292c4ff34bb190a2f75cf4d05a043e3342d25f4c90c7f18de5
MD5 072c68e2236427ecbb409a11c962c458
BLAKE2b-256 2cbdb9a448e88fac269f0f0d0c5b4d6b0acdd249cbde7e095cddc3e792e970b8

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc75513acc39420c9ac1c8f1fe5e539d1189a25bc44332b1384525fcee42b779
MD5 4e1b9caf972e8834739acab830d939ad
BLAKE2b-256 b7acc0fd615387074b8f14b63c964a91164f182d930553c42e88633a818ae092

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 af599b91aa10041cdc7b3dbc3c87a8c0926d08bae3742c10c5be8e645babe631
MD5 1d8b48b8c7d4ed252a02702c4ba27280
BLAKE2b-256 d98bd8feb2d5ec1c38ca3a91b93ecb4c95586fd07e484bd3d7ee54736787379a

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79999e5d65d40a9a527382a17f2b4c917883291e1633744c5b829ca35f53cba5
MD5 8045ca88779f0a37befe56a830a444ab
BLAKE2b-256 1fa4ff33eeb35df6ded02dadf18b9944a831756381ba5951b0e8ab735ec0336c

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 69c4113fdb0e58f539eca46afee69b4df8390094ca212a33822ab86b6175cf74
MD5 1c843179184dacaab291aa1833f3232a
BLAKE2b-256 f4fd3fc4ea82e0dcbfde3320c7df669075dc6bc90ab3d316a182d85184df84f4

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 d3e3bb326c7dc2a585a3c0ace024a8c68e9cf4c57af01764f622df88c59f964d
MD5 26b9a77514d1449f086c5ce809cfc297
BLAKE2b-256 d27bd13c4e293c72714d8538cb0d5848c6580aacf61e93bb61b1f6425d847629

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.4-cp38-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.4-cp38-none-win32.whl
Algorithm Hash digest
SHA256 916fd28b03a70a39dd4c2dd5e100ce3efe60b4f105a92cbe4245b883ce548c8c
MD5 f669c5fc3adfb31c7696797a1a75a04c
BLAKE2b-256 4b8253b212ce5522e5357edf302c0fe6dfde91cfb8838f97077366a8f486824f

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 762b88622340832b5e0e35f7f694776d55bd0db68881a9ee3ca60573c604784c
MD5 bd000e54403e6dd228e7b4198c22ddd8
BLAKE2b-256 34666391af26c7d56aa36761bb52c5b284a776670f7ddf485159451c905b42e8

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4dd184b30d265a22315fd17005edae338e1c4e7f17a2bf0407d767055bfb28b0
MD5 5a6dc9c79ad23d36abe77cee360f0a52
BLAKE2b-256 87a529cd5aa01c824ee5eb32b7e8303f617a8adc0bdd515a16ee54be33632ae8

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 4d10d0783e66b6619788cc091a59e99555355afbf2e79dd5df96f2157725752d
MD5 af8988ea56c5da57bedd1ec10d7b836d
BLAKE2b-256 aa2c6d27d0e225035bfb5298f921457d2e808cc5d2772a7fc2e5d1acce7431a4

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d974fd7447cab82e2bbd792de664777f65998912ef8b1005e87d24d61fb2ccbc
MD5 88d559c6ced3df7b234cc43227e5a326
BLAKE2b-256 f5c230781bffed36e9919a3f0879b87342bc625eaf621afc7aff0bf960b46b64

See more details on using hashes here.

File details

Details for the file functime-0.9.4-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.4-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 01e8b6573c2d54d68c0226d33303c4c6d548d6a096d70af17fafa4966988ca94
MD5 fad4da77935395e9308a6ebb334b65f8
BLAKE2b-256 336ded305be6e3f61ad0403a3516000f37580117bee5ed41a550863432113b24

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page