Skip to main content

Time-series machine learning at scale.

Project description

Time-series machine learning at scale


functime Python PyPi Code style: black GitHub Publish to PyPI GitHub Run Quickstart Discord


functime is a powerful Python library for production-ready global forecasting and time-series feature extraction on large panel datasets.

functime also comes with time-series preprocessing (box-cox, differencing etc), cross-validation splitters (expanding and sliding window), and forecast metrics (MASE, SMAPE etc). All optimized as lazy Polars transforms.

Join us on Discord!

Highlights

  • Fast: Forecast and extract features (e.g. tsfresh, Catch22) across 100,000 time series in seconds on your laptop
  • Efficient: Embarrassingly parallel feature engineering for time-series using Polars
  • Battle-tested: Machine learning algorithms that deliver real business impact and win competitions
  • Exogenous features: supported by every forecaster
  • Backtesting with expanding window and sliding window splitters
  • Automated lags and hyperparameter tuning using FLAML

Additional Highlights

functime comes with a specialized LLM agent to analyze, describe, and compare your forecasts. Check out the walkthrough here.

Getting Started

Install functime via the pip package manager.

pip install functime

functime comes with extra options. For example, to install functime with large-language model (LLM) and lightgbm features:

pip install "functime[llm,lgb]"
  • cat: To use catboost forecaster
  • xgb: To use xgboost forecaster
  • lgb: To use lightgbm forecaster
  • llm: To use the LLM-powered forecast analyst

Forecasting

import polars as pl
from functime.cross_validation import train_test_split
from functime.seasonality import add_fourier_terms
from functime.forecasting import linear_model
from functime.preprocessing import scale
from functime.metrics import mase

# Load commodities price data
y = pl.read_parquet("https://github.com/functime-org/functime/raw/main/data/commodities.parquet")
entity_col, time_col = y.columns[:2]

# Time series split
y_train, y_test = y.pipe(train_test_split(test_size=3))

# Fit-predict
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train)
y_pred = forecaster.predict(fh=3)

# functime ❤️ functional design
# fit-predict in a single line
y_pred = linear_model(freq="1mo", lags=24)(y=y_train, fh=3)

# Score forecasts in parallel
scores = mase(y_true=y_test, y_pred=y_pred, y_train=y_train)

# Forecast with target transforms and feature transforms
forecaster = linear_model(
    freq="1mo",
    lags=24,
    target_transform=scale(),
    feature_transform=add_fourier_terms(sp=12, K=6)
)

# Forecast with exogenous regressors!
# Just pass them into X
X = (
    y.select([entity_col, time_col])
    .pipe(add_fourier_terms(sp=12, K=6)).collect()
)
X_train, X_future = y.pipe(train_test_split(test_size=3))
forecaster = linear_model(freq="1mo", lags=24)
forecaster.fit(y=y_train, X=X_train)
y_pred = forecaster.predict(fh=3, X=X_future)

View the full walkthrough on forecasting here.

Feature Extraction

functime comes with over 100+ time-series feature extractors. Every feature is easily accessible via functime's custom ts (time-series) namespace, which works with any Polars Series or expression. To register the custom ts Polars namespace, you must first import functime in your module.

To register the custom ts Polars namespace, you must first import functime!

import polars as pl
import numpy as np
from functime.feature_extractors import FeatureExtractor, binned_entropy

# Load commodities price data
y = pl.read_parquet("https://github.com/functime-org/functime/raw/main/data/commodities.parquet")

# Get column names ("commodity_type", "time", "price")
entity_col, time_col, value_col = y.columns

# Extract a single feature from a single time-series
binned_entropy = binned_entropy(
    pl.Series(np.random.normal(0, 1, size=10)),
    bin_count=10
)

# 🔥 Also works on LazyFrames with query optimization
features = (
    pl.LazyFrame({
        "index": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
        "value": np.random.normal(0, 1, size=10)
    })
    .select(
        binned_entropy=pl.col("value").ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col("value").ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col("value").ts.longest_streak_above_mean(),
    )
    .collect()
)

# 🚄 Extract features blazingly fast on many
# stacked time-series using `group_by`
features = (
    y.group_by(entity_col)
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

# 🚄 Extract features blazingly fast on windows
# of many time-series using `group_by_dynamic`
features = (
    # Compute rolling features at yearly intervals
    y.group_by_dynamic(
        time_col,
        every="12mo",
        by=entity_col,
    )
    .agg(
        binned_entropy=pl.col(value_col).ts.binned_entropy(bin_count=10),
        lempel_ziv_complexity=pl.col(value_col).ts.lempel_ziv_complexity(threshold=3),
        longest_streak_above_mean=pl.col(value_col).ts.longest_streak_above_mean(),
    )
)

Related Projects

If you are interested in general data-science related plugins for Polars, you must check out polars-ds. polars-ds is a project created by one of functime's core maintainers and is the easiest way to extend your Polars pipelines with commonly used data-science operations made blazing fast with Rust!

License

functime is distributed under Apache-2.0.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

functime-0.9.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded PyPy manylinux: glibc 2.12+ i686

functime-0.9.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp312-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

functime-0.9.5-cp312-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.12 Windows x86

functime-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

functime-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686

functime-0.9.5-cp312-cp312-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

functime-0.9.5-cp312-cp312-macosx_10_12_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 macOS 10.12+ x86-64

functime-0.9.5-cp311-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

functime-0.9.5-cp311-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.11 Windows x86

functime-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

functime-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686

functime-0.9.5-cp311-cp311-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

functime-0.9.5-cp311-cp311-macosx_10_12_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

functime-0.9.5-cp310-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

functime-0.9.5-cp310-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.10 Windows x86

functime-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

functime-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686

functime-0.9.5-cp310-cp310-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

functime-0.9.5-cp310-cp310-macosx_10_12_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

functime-0.9.5-cp39-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

functime-0.9.5-cp39-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.9 Windows x86

functime-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

functime-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686

functime-0.9.5-cp39-cp39-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

functime-0.9.5-cp39-cp39-macosx_10_12_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

functime-0.9.5-cp38-none-win_amd64.whl (3.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

functime-0.9.5-cp38-none-win32.whl (3.2 MB view details)

Uploaded CPython 3.8 Windows x86

functime-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

functime-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

functime-0.9.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl (5.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686

functime-0.9.5-cp38-cp38-macosx_11_0_arm64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

functime-0.9.5-cp38-cp38-macosx_10_12_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.8 macOS 10.12+ x86-64

File details

Details for the file functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f626260051568c23966ca06f9f648b9f554905654d091ed0760204086e45d83
MD5 fa097f03e3641c5cb0aca77297418f27
BLAKE2b-256 1ef9520a8ec2a78366891f8c34e1f9a6298f898a89ccdee445c3fe55a12759f3

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a78ef5b860b071704fa43fb0a2574fd5ea5bf307510b6ea0937ed46e216cb30
MD5 80693ed43d4a708638f0aa9c158f051d
BLAKE2b-256 cd9b94cefbdc639a62e7972cb70253f4397548abfb3fc93897a44c9375c40eb9

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp310-pypy310_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 aa9619c351f1682e909cbb2908bf04493a62316ba41e01f9b840a821e8967cd7
MD5 9f6223d793e663564f43bb95ec47d89b
BLAKE2b-256 4896fbc2feb76eb936f5bae69753dffd7233082f939003ff779d91ac3f57a235

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 176ce3d694245c63c148100fb19726f50a6882873f5e008afceb9be4d3ba4837
MD5 7ec05d8856d05369b29c4717b1c7cba2
BLAKE2b-256 6970423a61b0aea538eab5712cf0117830d0cfdf1aba816f742f011c2e2b07a5

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61187060b755913221392113b94a91bce289c8e71b045154d9a67d8d4fe05447
MD5 483e3c0221c18cce1e0a8e5f3a84c0a0
BLAKE2b-256 383f84a83342492aec4c2bb51832d8748ff2226a49770f3b80d3ebcba19432e2

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e83c82c9fbbb4965a7afe520db09cdfb72a63740996a9084dad5aa9576d375b2
MD5 460c329a4b2593fb72c91b2613cb3ea2
BLAKE2b-256 6411e32108c29943ee2924ddc083ddd534b4e1bc232bb963f7ab229d59faeb30

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 666e27598a39a95b864ac40c8d2a9e5527545e31c5f858d41bac3fa086eddb83
MD5 43bc366a8c58ce72ceeed0755744e597
BLAKE2b-256 0087d4f9f0f0e66a75791cd1ca0f71fb33914e440b22df432a936873698ae314

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2976742b391b647af72b3fe3a5076761bdd67d37fc49f8d13bf9656eae056292
MD5 9b3a453767b830a83e36d7ec468f6688
BLAKE2b-256 93883edcc2d536aeaa23e87b312e72532237afb6fdb18138672d25a252cc6e0b

See more details on using hashes here.

File details

Details for the file functime-0.9.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 a28a1686c76f1d1e8394b759831b3fac82df8186d07ea31871e54f473cbb40e6
MD5 045028ebbe7fe2dc77bb73a8d84e18a7
BLAKE2b-256 13de1347299ec94ce6ba572fc35d2d62c754476f211f19cf0035c5e5e62fe127

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36fb0f10f135f0e4653b98ef1ef9d6f29889183df008646101cdb39a4798a033
MD5 49ea0947cbc9fe86a313796ce09e59d3
BLAKE2b-256 83d99c11c3ff7d6e4aa72bbe0ec7bed5690b4e7361b412477d53ce5bc86402fa

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-none-win_amd64.whl
Algorithm Hash digest
SHA256 65664d1d62a63203e29161a514af29b391f33b764074cef70774c10a263daabd
MD5 df64439e649fa17d6125de3e549625e1
BLAKE2b-256 d43ded5f2c56e9c621d4f4f1aa1c43a90645f3273cf456498fde28d0c98e672d

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-none-win32.whl.

File metadata

  • Download URL: functime-0.9.5-cp312-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.5-cp312-none-win32.whl
Algorithm Hash digest
SHA256 f1c43cd400b1fc8fc57d61f1dc4618ceeb9865ecdba4ff531bf03d4d79612763
MD5 c32999acb22657dec3f184354432b246
BLAKE2b-256 126d4be6daa904ecef0d8ba5354ed2b7123141c89b3a575cacdbcdf940ab5d1f

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dcc138599dc918aeb714f03574ea47fb4260d00c845b9ae88f49fcb6de10dcb0
MD5 7a3e1e8d4ee7f6c1cd8d97dc6239b4ee
BLAKE2b-256 203465ccdec94bf91eabf8dbaef1241d204a0dec0f8d67c80b8b05a3879602a9

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8e89b2be67f63e9e049a49ee490bb3f35cd69ed247b24aa697456931fa9dfa48
MD5 5b08de25d6c1287ace0ccb475974a78a
BLAKE2b-256 f9dc530bd83517e3908b8f1345f17e2225ba532c8849f6f83565404df9c93977

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 399cd30b67c97ecf1da932e761157a1bd19d4fb58f2347cd98ca821f48f45b44
MD5 a29d662a30ca5d952491ce35b2095edd
BLAKE2b-256 a90c45c8fe85910460eb0fd05d989244fc15796d7bbb009d0f0ba332b970f370

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abf59691392093eb44cf654b9f3f85997f90bafbadada158d64018d07fe27dc0
MD5 32cde94c14e0415671babb52760180f5
BLAKE2b-256 a19ae7bb95fcf7c1b0f42e087ab9ef88a10a321f5af3d9f404f56e0c4f26bb11

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp312-cp312-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp312-cp312-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 95a824cf57400b2d76df3e58d86c2ba91817fd4e601a20d82cd9c9d98f88a71e
MD5 5e6f012b65b71597753b804a2f83d587
BLAKE2b-256 bdd4df4eaadea789531d96a2b1c518ef05392f86834d30a46cf45b865ca9d3c1

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 c367789c45570b59464a1ae5ad0a5c5b65aa7959ce4ea538a4bbe745371bab00
MD5 d2899b3d84fef6fc92b894d82e0b6701
BLAKE2b-256 9a0e363f1cb3d5cea3330d15822f109a343304dcfbbcff63aa61d22e650ccd84

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-none-win32.whl.

File metadata

  • Download URL: functime-0.9.5-cp311-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.5-cp311-none-win32.whl
Algorithm Hash digest
SHA256 a38594c350df46a1dd74533e6e1ab708bd4cdb659b4050bc3eae92e8b27c22af
MD5 af14b1372156c1abdfb11874455e0641
BLAKE2b-256 87e3c04c5093a3d796fe812535089475829aeeec0daef21831683957c04047f6

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8b5d901251ae8e805921b60692bb52a95e64702d0a0f2b78ffc995e41f0800ab
MD5 b39f3987f1b1b240fc24d4121a7183e8
BLAKE2b-256 5c8d200331a18451c09cedad87a75da55cbf4d1076b7a43fe0a8b50380cbebc7

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a09d255436fd1712a7b94c4bbe39d14375a21487c5e94aacb68a4c224704006f
MD5 be787166d15276dc2382fc73bbd185ee
BLAKE2b-256 a09dec22aa9894804ac6fed95390a7142d0c7aa494dc535161351b56e6b673fa

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 7ee945c323bb35c2bb96115c2725c5503b86c0dd5eacffffb5784a350beeb7db
MD5 27e529906903ca1c442387a5d7c49db8
BLAKE2b-256 7cbe51a5f51020f776cda34482e8b46a565a4864de7b872f860927202ff71527

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c287b5ed4886c49ac7d0b322cb5f6dfe89031a06f9c84a4224269bab2d00fb07
MD5 80d62b986045de20b03bfb2e1a4765a7
BLAKE2b-256 b58993ab4b97d4abce2877bea9ea411581aa78e9a845493b47cf7a623a07e3e8

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d95968ed1c855a27e148ffea6eb48e9cf03b82b452203630798c60b8abaa7d27
MD5 15c71ba71396e68cb7c36789160d3aba
BLAKE2b-256 28be89123b1b25ba3e3723ae868de93095ad1de858947ccb64a92108542c80ea

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 cdf24407b467a97c83dc41d400c80c911043d1fe8500408af5c031f6bc0ba003
MD5 3976a173ea78b78b2c925bbce58770d6
BLAKE2b-256 b79f67366e2900787ba7793d3df9848b224acb7bc66c7cb42f3d4d5dc1340817

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-none-win32.whl.

File metadata

  • Download URL: functime-0.9.5-cp310-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.5-cp310-none-win32.whl
Algorithm Hash digest
SHA256 a6be5d01acc266c4bd3ebb82a006e717fe013dad7a089f9593a9f658da609ab3
MD5 906104517d57a32a047e9cfd85346de6
BLAKE2b-256 c6bb2c86eaac3e4a55821f3332ac1ad7148626a9a77f1e05e7e013521b907217

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e33e70d4af4b25f5e19b38356e26f7116c28d28888f99d7a2849404e2685c4ba
MD5 da85580911797c55738092e62abba895
BLAKE2b-256 539b74191bbfefcd0055d5d761c78f92dfd7416289d4f275874aa08dfcbe3e58

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9ae16c8fdba45ace3b853c79d568afb69e8b9108553f3c81e5c1df8ff4c4c0a3
MD5 f73d91852f0e5d68f3940e4d706191b9
BLAKE2b-256 30adaf87c763471f2c46f2f7192d436b2d0614442c05e57cf66347afc1a4b2f2

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 e66454de0ddce9ae49105f56c8fd7e9cdf528a0b13b876113b92d5cf77ef7e97
MD5 5a0e5c2d1a5c177d326a350f1e629bee
BLAKE2b-256 409478e26f43c40a70d7191de0eb288289a002e3d7e08103deb97e4a950fc966

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e3484d4e28c0d498eb157f773b1e77776a8d80e794ca70d1e56844e251a2d806
MD5 3e41b76bb80792d9ca5e39efa4346451
BLAKE2b-256 233fe51bcaca3ca980c7926ae2efb2828d2fe1638a4e82efec712480237a1bdc

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f01492442be6bb75ec7ff3f3ace39494a982a209fa354ba8eabb5e6fdcee024b
MD5 a77232d7dc62fb4431ef06a69129b93d
BLAKE2b-256 8eb0d9cb04a15c6557ccc70d2c6d3a0e063d61d60eccf20d1b0f71caf273252a

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 c6b91b2644c5451a155905fd188d32c81a544a200cffce63055beccbea147a21
MD5 586f72517e6b4dfa12560e8076afb7e2
BLAKE2b-256 fb462b49c36739c763de81d3cbbed9cb23ab41547da3985ff83c78d70462f2a0

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-none-win32.whl.

File metadata

  • Download URL: functime-0.9.5-cp39-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.5-cp39-none-win32.whl
Algorithm Hash digest
SHA256 5ac10ea0b717b3e7709c9290daf65d748f74cc1b78caa7a3b35d2450c7eed11b
MD5 e3573a8fa0aaf1f2ccda9fdd1bd74f46
BLAKE2b-256 38a417d8ace3df0b5adba434ba397797626582b0197c6a746e263f69683b4b24

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f304bf6d48ec5ae79a9b633289f57717e5db7a374265e8f2747cfe1c79bdcea9
MD5 3fc2cf09bf2639baaf511bb14c3071f8
BLAKE2b-256 872e8fa182d9e065ed8460bbe26f47c8276827b9ced661b5b7ac54a12c23d68d

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 529d98c7db56fe3fe5162c574f7233607bc9406a37952b194a6f8d3f9991da96
MD5 8dad5f14f6ac9018db39cbbe6e8acaad
BLAKE2b-256 9d4e157a463794408a3015081eb95c55c74322c68c76e4856ea3162d000a1fa2

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 2cba1f2b935ada45fa11635af7bd35b77a716fc8a8afd6535e881b116cef3a40
MD5 1ccf7241684f9c7e6a35314f2574e64d
BLAKE2b-256 254a837018e64cb750618c3602523405ff03d1dc3ddd594e71e734862d9f456f

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f348c267a0d257baefb8c65548885911ba655b9b08f377f4b66cc04c8818b89f
MD5 041b5f51e1072877e9be02ac854ab23a
BLAKE2b-256 27dd0af624b51b2d826d4a8fe2a6bec428565c9fc3eb7d1ab00acf9759210907

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 d6969b52dcca4970c73508c43bd6661aa8ace70e47de445f9f0c208a4d0ca8e2
MD5 1b3827334793a3c7be047de62cb1ff79
BLAKE2b-256 b4263cc992d3746e12e94f0de6dc55df1f434e4bd6a9a5a6d501e405fefc405f

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-none-win_amd64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 75664058ee9dc1af08abab68feff396f62bac8d0d122d293358b1fb4c6858421
MD5 71bce722049be2915670fa3a8ba94103
BLAKE2b-256 e2853cc24de0b39c92de5e5b3b17007d571c3a4d8c421e62e3da34b5b099e25c

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-none-win32.whl.

File metadata

  • Download URL: functime-0.9.5-cp38-none-win32.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: maturin/1.4.0

File hashes

Hashes for functime-0.9.5-cp38-none-win32.whl
Algorithm Hash digest
SHA256 330dcf7eafee87090b6363fe2a5ecf2076ab7d0eedfcfa64406f8317d648e014
MD5 9c38df28b76f4964a38ac28f1086bd71
BLAKE2b-256 01aca4743239c83ec29f8aba5b632e3c05097ff2d210fec7f56bb394de7ca5d5

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 26536aa633689c61022e953d9f5babea74ad35eae56ecade28261b1be8f19506
MD5 507416932634107b4131f077f3b4b490
BLAKE2b-256 ee8241d8cc41c7a5d545c8bbad9405d111fc17e111d34c134bdba7f7cca25152

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bff72ae79751e50d88f6b88a30768f4f19129e3ca76cfa6f7dca033b8f000279
MD5 833b8df50c576aaa612e8400c819954d
BLAKE2b-256 f81fa24a4d706695a98c82e19b174b3451c6bfea70a5e53f9e7f5425cebd5806

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
Algorithm Hash digest
SHA256 c324667eff58bd0f1b54dd5341dacf8d10e6b08b1128e9c9e90a083d860a53fe
MD5 6a528c983d178c07345f6e22850bc362
BLAKE2b-256 d45968faba9aca454d61f1eef064cbec1d2a241b1710d1b2d370c18308205f3d

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 14fe85610bb6b5de7da5d240cb48791b00528785a1ce1baa23b00be707feff18
MD5 ad830dc05c151326446ace3ecb37c449
BLAKE2b-256 7d0c776c8992e1c12c06e6493f8050b144b700a37ae0238722afd3fe3edacd28

See more details on using hashes here.

File details

Details for the file functime-0.9.5-cp38-cp38-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for functime-0.9.5-cp38-cp38-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 acb4a733ed57aec3dc86791a57454df4299bac263cd1482f02104edc28fabd32
MD5 e0195bcdf48e4a0c28f8993f22ee8ef0
BLAKE2b-256 9b20c8bae97f724cfed69b745cb6d5dfba62210f4812844ca2bc53831b14b89f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page