Python implementation of Scala-like monadic data types.
Project description
Functional Python - Scala-like monadic data types
Functional Python is a framework which implements Scala-like monadic data types, such as Option or Map.
Also implements final class decoration and AnyVal.
Why?
Method chaining
# ToDo: Example
Type Safety
# ToDo: Example
Api Description
Options
Represents optional values.
Instances of Option are either an instance of Some
or the object Option.empty
.
Options are generics of single type parameter.
Creating an Option
from functional.option import *
# Scala-like constructor
x = Some(4) # Some(4)
y = Option.empty # Option.empty
z = none # Option.empty
# Python-like constructor
x = Option(4) # Some(4)
y = Option(None) # Option.empty
Note that None
which is printed is not Python None
but is special object which does not contain any value and equals to Option(None)
:
from functional.option import *
print(str(Option.empty)) # "None"
print(repr(Option.empty)) # "Option.empty"
print(Option.empty is none) # True
print(Option.empty is None) # False
Getting value of an Option
Options implement .get
property and .getOrElse(default)
method.
First one checks Option is not empty and either returns value or throws an exception.
Second one returns default instead of throwing an exception.
from functional.option import *
x = Some(4) # Some(4)
y = none # None
x.get # 4
y.get # raises EmptyOption
x.get_or_else(5) # 4
y.get_or_else(5) # 5
# .is_defined returns True if Option is not None
x.is_defined # True
y.is_defined # False
# .is_empty is the opposite
x.is_empty # False
y.is_empty # True
# .non_empty is the same as .is_defined
x.non_empty # True
y.non_empty # False
Note that unlike in Scala, this Option's .get_or_else
is not lazy-evaluated,
so this code will fail:
Some(4).get_or_else(1/0)
To prevent, it is recommended use python-like accessors (see below).
Mapping an Option
Options are both functors and monads, meaning they possess .map()
and .flat_map()
methods
with the following signatures (where object is a type Option[A]
):
.map(f: A => B): Option[B]
- map value inside an Option..flat_map(f: A => Option[B]): Option[B]
- map value inside an Option to an Option.
Both these methods work only on non-empty options, returning Option.empty
for otherwise.
from functional.option import *
x = Some(4) # Some(4)
y = none # None
z = Some(6) # Some(6)
x.map(lambda v: v + 2) # Some(6)
y.map(lambda v: v + 2) # None
z.map(lambda v: v + 2) # Some(8)
x.flat_map(lambda v: Some(v) if v < 5 else none) # Some(4)
y.flat_map(lambda v: Some(v) if v < 5 else none) # None
z.flat_map(lambda v: Some(v) if v < 5 else none) # None
Flattening an Option
Sometimes you get an Option which contains Option.
There is special property .flatten
which converts Option[Option[T]]
into Option[T]
# ToDo: Example
Python-style accessors
Options support python-like accessors / converters __bool__
, __iter__
, __len__
, and __enter__/__exit
.
# ToDo: Example
Final Classes
Final classes are guarded from being inherited.
from functional.final import final_class
@final_class
class MyFinalClass:
def __init__(self, x):
self.x = x
# The following would raise FinalInheritanceError
class ChildClass(MyFinalClass):
def __init__(self, x = 5):
super().__init__(x)
This is implemented by changing their
__init_subclass__
method with the one throwing error.
However, any parent __init_sublass__
are safe:
from functional.final import final_class
class A:
def __init_subclass__(cls, **kwargs):
super().__init_subclass__(**kwargs)
cls.x = 4
@final_class
class B(A):
pass
print(B.x) # Prints 4
AnyVal
AnyVal is a helper abstract class to make Scala-like AnyVal's.
It is a dataclass-like class with the only field value
,
constructor, hash, representation, and equals, as well as encode/decode methods.
AnyVal subclasses are made to be final. Field value is supposed to be write-protected.
Generally, works similar to typing.NewType
, but the field value
MUST be accepted explicitly.
from functional.anyval import AnyVal
class CustomID(AnyVal[str]): pass
class OtherAnyVal(AnyVal[str]): pass
custom_id = CustomID('1tt3s')
print(custom_id == '1tt3s') # False
print(custom_id.value == '1tt3s') # True
print(custom_id == OtherAnyVal('1tt3s')) # False
If package dataclasses-json is installed,
AnyVal subclasses are registered to have simple decoders and encoders.
If the data type could not be handled by JSON or DataClassesJSON library,
you can override methods decode_value
and encode_value
from datetime import date
from dataclasses_json import DataClassJsonMixin
from dataclasses import dataclass
from functional.anyval import AnyVal
class MyID(AnyVal[int]): pass
class Date(AnyVal[date]):
@classmethod
def decode_value(cls, data: str) -> date:
if (not isinstance(data, str)):
raise TypeError(f"Cannot decode {date.__name__!r} from type {type(data).__qualname__!r}, ISO-format string required")
return date.fromisoformat(data)
def encode_value(self) -> str:
return self.value.isoformat()
@dataclass
class Person(DataClassJsonMixin):
id: MyID
name: str
born: Date
peter = Person(MyID(15), name='peter', born=Date(date(1995, 7, 25)))
mark = Person(MyID(-131239231231), name='mark', born=Date(date.fromisoformat('2002-06-15')))
print(peter.to_json()) # {"id": 15, "name": "peter", "born": "1990-01-12"}
print(mark.to_json()) # {"id": -131239231231, "name": "mark", "born": "2002-06-15"}
print(Person.from_json('''{ "name": "Dave", "born": "2021-07-05", "id": 61123236 }'''))
# Person(id=MyID(61123236), name='Dave', born=datetime.date(2021, 7, 5))
Filters
This package provides classes for filtering. Filters are function-like classes those can, well, filter the given sequence for the given conditions.
The main difference between them and normal functions or lambdas is the fact all classes in this file are frozen dataclasses and support hashing.
List of implemented filters:
IsNotNoneFilter
HasAttrFilter
AndFilter
OrFilter
NotFilter
Usage
When inheriting from this class, make sure:
check_element
method is implemented- Class is marked with
dataclass(frozen=True)
decoration
from dataclasses import dataclass
from functional.filters import AbstractFilter
@dataclass(frozen=True)
class GEFilter(AbstractFilter[int]):
than: int
def check_element(self, el: int) -> bool:
return el >= self.than
lst = [ -1, 3, 8, 5, 0, -6, 7 ]
for el in GEFilter(5).filter(lst):
print(el)
# Output:
# 8 5 7
Other sub-packages:
Chain Tools
functional.chaintools
provides a number of functions those support method chaining.
functional.chaintools.chunks()
: Splits an iterable into chunks of given size.functional.chaintools.apply()
: Synchronously apply the given functionfunc
to all elements of iterablecoll
. Logically same aslist(map(func, coll))
, but looks prettier.functional.chaintools.apply_items()
: Synchronously apply the given functionfunc
to all elements of iterable of iterablescoll
. Function results are ignored. Logically same aslist(map(list, map_items(func, coll)))
, but looks prettier.functional.chaintools.map_items()
: Lazy apply functionfunc
to all elements of the given iterable of iterablescoll
.functional.chaintools.chain()
: Chain methods mapping for the given element. Just looks prettier thanfunc5(func4(func3(func2(func1(el)))))
.functional.chaintools.chain_map()
: Chain methods mapping for the given iterable. Just looks prettier thanmap(lambda el: func5(func4(func3(func2(func1(el))))), coll)
or even evil devilmap(func5, map(func4, map(func3, map(func2, map(func1, el)))))
.functional.chaintools.chain_map_items()
: Chain methods mapping for the given iterable. Just looks prettier thangen = ((func5(func4(func3(func2(func1(el))))) for el in it) for it in coll)
functional.chaintools.invcall()
: Version offunctional.predef.call()
with inversed arguments order.functional.chaintools.invmap()
: Version ofbuiltins.map()
with inversed arguments order.functional.chaintools.invmap_items()
: Version offunctional.chaintools.map_items()
with inversed arguments order.
Utilities:
functional.util
-- miscellaneous functions and classes used across the package.
functional.util.unmake_dataclass()
: Unregisters the given classcls
from being adataclass
. It keeps all its DataClass properties (including dataclass nesting potential) but not its__dataclass_fields__
which are the only criteriadataclasses.is_dataclass()
decides if the argument is a dataclass.functional.util.PrettyException
: Abstract class providing base to all exceptions in the package.
Map
TODO
Plans
- Test coverage
- Support Maps (both mutable and immutable)
- Support Lists (both mutable and immutable)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file functional-python-0.3.1.tar.gz
.
File metadata
- Download URL: functional-python-0.3.1.tar.gz
- Upload date:
- Size: 20.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cc7c8f8eb5d2fe9943838c27a6ace9860e05f831f747826d25aae06bf4b9a004 |
|
MD5 | e66c3370298c48157a44b4a6720c540e |
|
BLAKE2b-256 | b38c7e404e0b7f4aeccc825511e37b5fd6b0b50badad378030e4a0bb8552a4ba |
File details
Details for the file functional_python-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: functional_python-0.3.1-py3-none-any.whl
- Upload date:
- Size: 21.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.63.0 importlib-metadata/4.11.2 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba6806f58ea71c7b9951c346cb28b30466a18c9286bb454b1288603211242800 |
|
MD5 | cc7c40668fdf04092347c9f613f26789 |
|
BLAKE2b-256 | 29acefc1918f74e217e2956059eb66002cc2c9312ea7ae110b40402bd66ae511 |