A fancy and practical functional tools
Project description
A collection of fancy functional tools focused on practicality.
Inspired by clojure, underscore and my own abstractions. Keep reading to get an overview or read the docs. Or jump directly to cheatsheet.
Works with Python 3.4+ and pypy3.
Installation
pip install funcy
Overview
Import stuff from funcy to make things happen:
from funcy import whatever, you, need
Merge collections of same type (works for dicts, sets, lists, tuples, iterators and even strings):
merge(coll1, coll2, coll3, ...)
join(colls)
merge_with(sum, dict1, dict2, ...)
Walk through collection, creating its transform (like map but preserves type):
walk(str.upper, {'a', 'b'}) # {'A', 'B'}
walk(reversed, {'a': 1, 'b': 2}) # {1: 'a', 2: 'b'}
walk_keys(double, {'a': 1, 'b': 2}) # {'aa': 1, 'bb': 2}
walk_values(inc, {'a': 1, 'b': 2}) # {'a': 2, 'b': 3}
Select a part of collection:
select(even, {1,2,3,10,20}) # {2,10,20}
select(r'^a', ('a','b','ab','ba')) # ('a','ab')
select_keys(callable, {str: '', None: None}) # {str: ''}
compact({2, None, 1, 0}) # {1,2}
Manipulate sequences:
take(4, iterate(double, 1)) # [1, 2, 4, 8]
first(drop(3, count(10))) # 13
lremove(even, [1, 2, 3]) # [1, 3]
lconcat([1, 2], [5, 6]) # [1, 2, 5, 6]
lcat(map(range, range(4))) # [0, 0, 1, 0, 1, 2]
lmapcat(range, range(4)) # same
flatten(nested_structure) # flat iter
distinct('abacbdd') # iter('abcd')
lsplit(odd, range(5)) # ([1, 3], [0, 2, 4])
lsplit_at(2, range(5)) # ([0, 1], [2, 3, 4])
group_by(mod3, range(5)) # {0: [0, 3], 1: [1, 4], 2: [2]}
lpartition(2, range(5)) # [[0, 1], [2, 3]]
chunks(2, range(5)) # iter: [0, 1], [2, 3], [4]
pairwise(range(5)) # iter: [0, 1], [1, 2], ...
And functions:
partial(add, 1) # inc
curry(add)(1)(2) # 3
compose(inc, double)(10) # 21
complement(even) # odd
all_fn(isa(int), even) # is_even_int
one_third = rpartial(operator.div, 3.0)
has_suffix = rcurry(str.endswith, 2)
Create decorators easily:
@decorator
def log(call):
print call._func.__name__, call._args
return call()
Abstract control flow:
walk_values(silent(int), {'a': '1', 'b': 'no'})
# => {'a': 1, 'b': None}
@once
def initialize():
"..."
with suppress(OSError):
os.remove('some.file')
@ignore(ErrorRateExceeded)
@limit_error_rate(fails=5, timeout=60)
@retry(tries=2, errors=(HttpError, ServiceDown))
def some_unreliable_action(...):
"..."
class MyUser(AbstractBaseUser):
@cached_property
def public_phones(self):
return self.phones.filter(public=True)
Ease debugging:
squares = {tap(x, 'x'): tap(x * x, 'x^2') for x in [3, 4]}
# x: 3
# x^2: 9
# ...
@print_exits
def some_func(...):
"..."
@log_calls(log.info, errors=False)
@log_errors(log.exception)
def some_suspicious_function(...):
"..."
with print_durations('Creating models'):
Model.objects.create(...)
# ...
# 10.2 ms in Creating models
And much more.
Dive in
Funcy is an embodiment of ideas I explain in several essays:
Running tests
To run the tests using your default python:
pip install -r test_requirements.txt py.test
To fully run tox you need all the supported pythons to be installed. These are 3.4+ and PyPy3. You can run it for particular environment even in absense of all of the above:
tox -e py310 tox -e pypy3 tox -e lint
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file funcy-2.0.tar.gz
.
File metadata
- Download URL: funcy-2.0.tar.gz
- Upload date:
- Size: 537.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3963315d59d41c6f30c04bc910e10ab50a3ac4a225868bfa96feed133df075cb |
|
MD5 | ed5eea5f31fdb2c562dc32cadb8d0742 |
|
BLAKE2b-256 | 70b8c6081521ff70afdff55cd9512b2220bbf4fa88804dae51d1b57b4b58ef32 |
File details
Details for the file funcy-2.0-py2.py3-none-any.whl
.
File metadata
- Download URL: funcy-2.0-py2.py3-none-any.whl
- Upload date:
- Size: 30.9 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53df23c8bb1651b12f095df764bfb057935d49537a56de211b098f4c79614bb0 |
|
MD5 | c7f45b9e922ea90b628a36a78cc50518 |
|
BLAKE2b-256 | d508c2409cb01d5368dcfedcbaffa7d044cc8957d57a9d0855244a5eb4709d30 |