Skip to main content

A fancy and practical functional tools

Project description

A collection of fancy functional tools focused on practicality.

Inspired by clojure, underscore and my own abstractions. Keep reading to get an overview or read the docs.

Works with Python 2.6+, 3.3+ and pypy.

Installation

pip install funcy

Overview

Just import stuff from funcy to make things happen:

from funcy import whatever, you, need

Merge collections of same type (works for dicts, sets, lists, tuples, iterators and even strings):

merge(coll1, coll2, coll3, ...)
join(colls)
merge_with(sum, dict1, dict2, ...)

Walk through collection, creating its transform (like map but preserves type):

walk(str.upper, {'a', 'b'})            # {'A', 'B'}
walk(reversed, {'a': 1, 'b': 2})       # {1: 'a', 2: 'b'}
walk_keys(double, {'a': 1, 'b': 2})    # {'aa': 1, 'bb': 2}
walk_values(inc, {'a': 1, 'b': 2})     # {'a': 2, 'b': 3}

Select a part of collection:

select(even, {1,2,3,10,20})                  # {2,10,20}
select(r'^a', ('a','b','ab','ba'))           # ('a','ab')
select_keys(callable, {str: '', None: None}) # {str: ''}
compact({2, None, 1, 0})                     # {1,2}

Manipulate sequences:

take(4, iterate(double, 1)) # [1, 2, 4, 8]
first(drop(3, count(10)))   # 13

remove(even, [1, 2, 3])     # [1, 3]
concat([1, 2], [5, 6])      # [1, 2, 5, 6]
cat(map(range, range(4)))   # [0, 0, 1, 0, 1, 2]
mapcat(range, range(4))     # same
flatten(nested_structure)   # flat_list
distinct('abacbdd')         # list('abcd')

split(odd, range(5))        # ([1, 3], [0, 2, 4])
split_at(2, range(5))       # ([0, 1], [2, 3, 4])
group_by(mod3, range(5))    # {0: [0, 3], 1: [1, 4], 2: [2]}

partition(2, range(5))      # [[0, 1], [2, 3]]
chunks(2, range(5))         # [[0, 1], [2, 3], [4]]
pairwise(range(5))          # iter: [0, 1], [1, 2], ...

And functions:

partial(add, 1)             # inc
curry(add)(1)(2)            # 3
compose(inc, double)(10)    # 21
complement(even)            # odd
all_fn(isa(int), even)      # is_even_int

Create decorators easily:

@decorator
def log(call):
    print call._func.__name__, call._args
    return call()

Abstract control flow:

walk_values(silent(int), {'a': '1', 'b': 'no'})
# => {'a': 1, 'b': None}

@once
def initialize():
    "..."

with suppress(OSError):
    os.remove('some.file')

@ignore(ErrorRateExceeded)
@limit_error_rate(fails=5, timeout=60)
@retry(tries=2, errors=(HttpError, ServiceDown))
def some_unreliable_action(...):
    "..."

class MyUser(AbstractBaseUser):
    @cached_property
    def public_phones(self):
        return self.phones.filter(public=True)

Ease debugging:

squares = {tap(x, 'x'): tap(x * x, 'x^2') for x in [3, 4]}
# x: 3
# x^2: 9
# ...

@print_exits
def some_func(...):
    "..."

@log_calls(log.info, errors=False)
@log_errors(log.exception)
def some_suspicious_function(...):
    "..."

And much more.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funcy-1.4.tar.gz (23.0 kB view details)

Uploaded Source

File details

Details for the file funcy-1.4.tar.gz.

File metadata

  • Download URL: funcy-1.4.tar.gz
  • Upload date:
  • Size: 23.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for funcy-1.4.tar.gz
Algorithm Hash digest
SHA256 416a7a3f0f772dee4396769cc5fceea59cf84e8b2e0ba3f6cf1d43e8dd0362c1
MD5 26de652aa83409a3ec22ca865223aff5
BLAKE2b-256 3f8716419937addd9c95869248a32d8265b8d25679441fc77a6dbe54dbf7907a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page