Functional factorization for matrices and tensors
Project description
FunFact: Build Your Own Tensor Decomposition Model in a Breeze
FunFact is a Python package that aims to simplify the design of matrix and tensor factorization algorithms. It features a powerful programming interface that augments the NumPy API with Einstein notations for writing concise tensor expressions. Given an arbitrary forward calculation scheme, the package will solve the corresponding inverse problem using stochastic gradient descent, automatic differentiation, and multi-replica vectorization. Its application areas include quantum circuit synthesis, tensor decomposition, and neural network compression. It is GPU- and parallelization-ready thanks to modern numerical linear algebra backends such as JAX/TensorFlow and PyTorch.
Quick start example: semi-nonnegative CP decomposition
Install from pip:
pip install -U funfact
Package import:
import funfact as ff
import numpy as np
Create target tensor:
T = np.arange(60, dtype=np.float32).reshape(3, 4, 5); T
Define abstract tensors and indices:
R = 2
a = ff.tensor('a', T.shape[0], R, prefer=ff.conditions.NonNegative())
b = ff.tensor('b', T.shape[1], R)
c = ff.tensor('c', T.shape[2], R)
i, j, k, r = ff.indices('i, j, k, r')
Create a tensor expression (only specifies the algebra but does not carry out the computation immediately):
tsrex = (a[i, ~r] * b[j, r]) * c[k, r]; tsrex
Find rank-2 approximation:
>>> fac = ff.factorize(tsrex, T, max_steps=1000, nvec=8, penalty_weight=10)
>>> fac.factors
100%|██████████| 1000/1000 [00:03<00:00, 304.00it/s]
<'data' fields of tensors a, b, c>
Reconstruction:
>>> fac()
DeviceArray([[[-0.234, 0.885, 2.004, 3.123, 4.243],
[ 4.955, 5.979, 7.002, 8.025, 9.049],
[10.145, 11.072, 12. , 12.927, 13.855],
[15.335, 16.167, 16.998, 17.83 , 18.661]],
[[20.025, 21.014, 22.003, 22.992, 23.981],
[25.019, 26.01 , 27.001, 27.992, 28.983],
[30.013, 31.006, 31.999, 32.992, 33.985],
[35.007, 36.002, 36.997, 37.992, 38.987]],
[[40.281, 41.14 , 41.999, 42.858, 43.716],
[45.082, 46.04 , 46.999, 47.958, 48.917],
[49.882, 50.941, 51.999, 53.058, 54.117],
[54.682, 55.841, 56.999, 58.158, 59.316]]], dtype=float32)
Examine factors:
>>> fac['a']
DeviceArray([[1.788, 1.156],
[3.007, 0.582],
[4.226, 0.008]], dtype=float32)
>>> fac['b']
DeviceArray([[-2.923, -4.333],
[-3.268, -3.541],
[-3.614, -2.749],
[-3.959, -1.957]], dtype=float32)
>>> fac['c']
DeviceArray([[-3.271, 3.461],
[-3.341, 3.309],
[-3.41 , 3.158],
[-3.479, 3.006],
[-3.548, 2.855]], dtype=float32)
How to cite
If you use this package for a publication (either in-paper or electronically), please cite it using the following DOI: https://doi.org/10.11578/dc.20210922.1
Contributors
Current developers:
Previou contributors:
Copyright
FunFact Copyright (c) 2021, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.
If you have questions about your rights to use or distribute this software, please contact Berkeley Lab's Intellectual Property Office at IPO@lbl.gov.
NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit others to do so.
Funding Acknowledgment
This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file funfact-1.0.1.tar.gz
.
File metadata
- Download URL: funfact-1.0.1.tar.gz
- Upload date:
- Size: 60.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 889d3414cb9418d9473d147db8cf43af27476af304eb15072a68a973b03b3ce3 |
|
MD5 | 4b2bf8af80382a07992e802692bf07fe |
|
BLAKE2b-256 | efd50482641676df607db02663b9a04991cf160d5a6117f935cc6ca7c1aab26a |