Skip to main content

Generate heatmap-like visualisations for benchmark data frames.

Project description

image

Funkyheatmappy

Funkyheatmap in Python: Generating Funky Heatmaps for Data Frames

Installation

You can install funkyheatmappy from GitHub using the following command:

pip install funkyheatmappy

Usage

We use the mtcars dataset to demonstrate the usage of the funkyheatmappy package.

import funkyheatmappy
import pandas as pd

mtcars = pd.read_csv("./test/data/mtcars.csv")

You can visualise the dataset as follows:

funkyheatmappy.funkyheatmap(mtcars)

However, it's easy to add some more information and style the plot better:

mtcars = mtcars.rename(columns={"Unnamed: 0": "id"})

column_lists = [
  ["id", "group", "name", "geom", "options", "palette"],
  ["id", np.nan, "", "text", {"ha": 0, "width": 6}, np.nan],
  ["mpg", "overall", "Miles / gallon", "bar", {"width": 4, "legend": False}, "palette1"],
  ["cyl", "overall", "Number of cylinders", "bar", {"width": 4, "legend": False}, "palette2"],
  ["disp", "group1", "Displacement (cu.in.)", "funkyrect", dict(), "palette1"],
  ["hp", "group1", "Gross horsepower", "funkyrect", dict(), "palette1"],
  ["drat", "group1", "Rear axle ratio", "funkyrect", dict(), "palette1"],
  ["wt", "group1", "Weight (1000 lbs)", "funkyrect", dict(), "palette1"],
  ["qsec", "group2", "1/4 mile time", "circle", dict(), "palette2"],
  ["vs", "group2", "Engine", "circle", dict(), "palette2"],
  ["am", "group2", "Transmission", "circle", dict(), "palette2"],
  ["gear", "group2", "# Forward gears", "circle", dict(), "palette2"],
  ["carb", "group2", "# Carburetors", "circle", dict(), "palette2"],
]

column_info = pd.DataFrame(column_lists[1:], columns=column_lists[0])
column_info.index = column_info["id"]

column_groups = pd.DataFrame(columns=["Category", "group", "palette"],
                              data = [["Overall", "overall", "overall"],
                                      ["Group1", "group1", "palette1"],
                                      ["Group2", "group2", "palette2"]]
                            )

funkyheatmappy.funkyheatmap(mtcars, column_info = column_info, column_groups = column_groups)

Documentation

Reference documentation is available at funkyheatmap.github.io/funkyheatmappy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funkyheatmappy-0.1.0.tar.gz (10.5 MB view details)

Uploaded Source

Built Distribution

funkyheatmappy-0.1.0-py3-none-any.whl (21.8 kB view details)

Uploaded Python 3

File details

Details for the file funkyheatmappy-0.1.0.tar.gz.

File metadata

  • Download URL: funkyheatmappy-0.1.0.tar.gz
  • Upload date:
  • Size: 10.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.27.2

File hashes

Hashes for funkyheatmappy-0.1.0.tar.gz
Algorithm Hash digest
SHA256 158b82d2a6873cbac591d7821d83720da6df222d400c5832486bf491924a6dba
MD5 848ef7d797fcd595c4a84498ed6e71ab
BLAKE2b-256 2b5a4c0924ab7e069c82291261bda8cc3988ebd7d0060aed682f3e649bb00862

See more details on using hashes here.

File details

Details for the file funkyheatmappy-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for funkyheatmappy-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 daaf90e4a74e3b2cc9ec0e57c909060e9fb9642bbedc7fe3580260008eed3a22
MD5 dc1db0dfa28cbb07a0f3e73bf426c2b9
BLAKE2b-256 dea702588ed06b833fd2ff75d6e2eb64ffe4414c0f5aa33f32099996afbf1482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page