Skip to main content

Add your description here

Project description

lbm

A simple lattice-Boltzmann code for 2D flow resolutions. All the tools are contained in the lattice.py file, and separate cases are built on top of this library.

Contents

This LBM code includes:

  • D2Q9 lattice
  • TRT collision operator
  • Zou-He on all boundary conditions
  • Drag/lift computation using interpolated bounce-back
  • Core routines are deferred to Numba

Below are some examples ran with the code. The related cases are available in the repository.

Lid-driven cavity

A simple driven cavity in unit square. Launch it by running python3 cavity.py.
Below are the computed time-domain velocity norms and final streamlines at Re=100 (left) and Re=1000 (right).

A comparison of u_x = f(y) at the center of the domain with reference data from "U. Ghia, K. N. Ghia, C. T. Shin, High-Re solutions for incompressible flow using Navier-Stokes equations and multigrid method."

Turek benchmark

The Turek cylinder benchmark CFD case is described in "Schafer, M., Turek, S. Benchmark Computations of Laminar Flow Around a Cylinder". The 2D case consists in a circular cylinder in a channel with top and bottom no-slip conditions, and with a Poiseuille flow at the inlet (these cases are named 2D-1 and 2D-2 in the aforementionned reference). The cylinder is voluntarily not centered to trigger instability at sufficient Reynolds number. Here, we explore the accuracy of the drag and lift computation.

ny 2D-1 (Re=20) Cd 2D-1 (Re=20) Cl 2D-2 (Re=100) Cd 2D-2 (Re=100) Cl
Turek --- 5.5800 0.0107 3.2300 1.0000
lbm 100 5.6300 0.0862 3.0411 0.5834
lbm 200 5.5804 0.0371 3.2582 1.2047
lbm 300 5.5846 0.0261 3.2152 1.0987

Below are videos of the 2D-1 and 2D-2 cases:

Poiseuille with random obstacles

It is possible to run a Poiseuille flow with random obstacles in the domain. Below is an example.

Running

To run a simulation, adjust the parameters in the related python file, then run python3 case.py. A results folder will be generated in ./results/ with the current date and time. The png/ folder will contain outputs of the velocity norm over the domain. To generate a video out of the png files, you can use the convert command as follows:

convert -delay 10 -resize 50% -loop 0 'u_norm_%d.png'[0-100] animation.gif

To optimize and resize gifs, use gifsicle :

gifsicle -i animation.gif --scale 0.6 -O3 --colors 256 -o anim-opt.gif

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

funlbm-1.1.6.tar.gz (12.5 kB view details)

Uploaded Source

Built Distribution

funlbm-1.1.6-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file funlbm-1.1.6.tar.gz.

File metadata

  • Download URL: funlbm-1.1.6.tar.gz
  • Upload date:
  • Size: 12.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.25

File hashes

Hashes for funlbm-1.1.6.tar.gz
Algorithm Hash digest
SHA256 033bf13553dc75f4a0e4d433a39e22eef43d5d60b32b9d923a4c049efd9e39c2
MD5 f2edd201dadff7496173c4c175bbb6f3
BLAKE2b-256 b003b1c4f725451b443fc00b9dd864f9819ae58ea81ba8659cea95cae3f406b1

See more details on using hashes here.

File details

Details for the file funlbm-1.1.6-py3-none-any.whl.

File metadata

  • Download URL: funlbm-1.1.6-py3-none-any.whl
  • Upload date:
  • Size: 13.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.4.25

File hashes

Hashes for funlbm-1.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9327e3b37bf7a72654af5c252f15f1c97b53ff66d8e49208971044c202faef74
MD5 ca01502ccf48d426ce6e00f0002a3af0
BLAKE2b-256 4b044d7d5a19063f7fa4bb8f606a7a0812068d5b38cfd8d26f83ef3f67fc52c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page