Skip to main content

Useful packages for DL

Project description

FusionLab



PyPI version Test Downloads

Documentation

FusionLab is an open-source frameworks built for Deep Learning research written in PyTorch and Tensorflow. The code is easy to read and modify especially for newbie. Feel free to send pull requests :D

Installation

With pip

pip install fusionlab

For Mac M1 chip users

Install on Macbook M1 chip

How to use

import fusionlab as fl

# PyTorch
encoder = fl.encoders.VGG16()
# Tensorflow
encoder = fl.encoders.TFVGG16()

Documentation

Doc

Encoders

encoder list

Losses

Loss func list

  • Dice Loss
  • Tversky Loss
  • IoU Loss
# Dice Loss (Multiclass)
import fusionlab as fl

# PyTorch
pred = torch.randn(1, 3, 4, 4) # (N, C, *)
target = torch.randint(0, 3, (1, 4, 4)) # (N, *)
loss_fn = fl.losses.DiceLoss()
loss = loss_fn(pred, target)

# Tensorflow
pred = tf.random.normal((1, 4, 4, 3), 0., 1.) # (N, *, C)
target = tf.random.uniform((1, 4, 4), 0, 3) # (N, *)
loss_fn = fl.losses.TFDiceLoss("multiclass")
loss = loss_fn(target, pred)


# Dice Loss (Binary)

# PyTorch
pred = torch.randn(1, 1, 4, 4) # (N, 1, *)
target = torch.randint(0, 3, (1, 4, 4)) # (N, *)
loss_fn = fl.losses.DiceLoss("binary")
loss = loss_fn(pred, target)

# Tensorflow
pred = tf.random.normal((1, 4, 4, 1), 0., 1.) # (N, *, 1)
target = tf.random.uniform((1, 4, 4), 0, 3) # (N, *)
loss_fn = fl.losses.TFDiceLoss("binary")
loss = loss_fn(target, pred)

Segmentation

import fusionlab as fl
# PyTorch UNet
unet = fl.segmentation.UNet(cin=3, num_cls=10)

# Tensorflow UNet
# Multiclass Segmentation
unet = tf.keras.Sequential([
   fl.segmentation.TFUNet(num_cls=10, base_dim=64),
   tf.keras.layers.Activation(tf.nn.softmax),
])

# Binary Segmentation
unet = tf.keras.Sequential([
   fl.segmentation.TFUNet(num_cls=1, base_dim=64),
   tf.keras.layers.Activation(tf.nn.sigmoid),
])

Segmentation model list

  • UNet
  • ResUNet
  • UNet2plus

N Dimensional Model

some models can be used in 1D, 2D, 3D

import fusionlab as fl

resnet1d = fl.encoders.ResNet50V1(cin=3, spatial_dims=1)
resnet2d = fl.encoders.ResNet50V1(cin=3, spatial_dims=2)
resnet3d = fl.encoders.ResNet50V1(cin=3, spatial_dims=3)

unet1d = fl.segmentation.UNet(cin=3, num_cls=10, spatial_dims=1)
unet2d = fl.segmentation.UNet(cin=3, num_cls=10, spatial_dims=2)
unet3d = fl.segmentation.UNet(cin=3, num_cls=10, spatial_dims=3)

News

Release logs

Acknowledgements

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fusionlab-0.1.13.tar.gz (63.2 kB view details)

Uploaded Source

Built Distribution

fusionlab-0.1.13-py3-none-any.whl (95.4 kB view details)

Uploaded Python 3

File details

Details for the file fusionlab-0.1.13.tar.gz.

File metadata

  • Download URL: fusionlab-0.1.13.tar.gz
  • Upload date:
  • Size: 63.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for fusionlab-0.1.13.tar.gz
Algorithm Hash digest
SHA256 253cec89e8451d0991429e60402e87133c2058a93e0d82021af6ebea5703ebe8
MD5 388a91a7c64639ff725909d4df6250e4
BLAKE2b-256 2036f13675721c101d1f6bc598551d9ebb31b13c8d5bc8fa01daea36a19f45e4

See more details on using hashes here.

File details

Details for the file fusionlab-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: fusionlab-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 95.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.8

File hashes

Hashes for fusionlab-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 3c76e0e13f271d8e5da39fa76c56aabd6a30bda8da34981fde0b354d780563ad
MD5 c102a07d6ae7e01c7860e70d9458d720
BLAKE2b-256 e7eac74dfc2b5b929ba7a6597b3eed5cc90d36e63b669e6c7ec8457ef3f1848e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page