Skip to main content

A Fuzzy Matching Approach for Clustering Strings

Project description

Fuzz Up [W.I.P.]

Build status codecov PyPI PyPI - Downloads License

fuzzup offers a simple approach for clustering strings based on Levenshtein Distance using Fuzzy Matching in conjunction with Hierarchical Clustering.

Installation guide

fuzzup can be installed from the Python Package Index (PyPI) by:

pip install fuzzup

If you want the development version then install directly from Github.

Workflow

fuzzup organizes strings by forming clusters from them. It does so in 3 steps:

  1. Compute all of the mutual string distances (Levensteihn Distances/fuzzy ratios) between the strings
  2. Form clusters of strings (using hierarchical clustering) based on the distances from (1)
  3. Rank the clusters by simply counting the number of nodes(strings) in each cluster
# TODO: update example with tuned model.
# strings we want to cluster
>>> person_names = ['Donald Trump', 'Donald Trump', 
                    'J. biden', 'joe biden', 'Biden', 
                    'Bide', 'mark esper', 'Christopher c . miller', 
                    'jim mattis', 'Nancy Pelosi', 'trumps',
                    'Trump', 'Donald', 'miller']

>>> from fuzzup.gear import form_clusters_and_rank
>>> form_clusters_and_rank(person_names)
[{'PROMOTED_STRING': 'Donald Trump',
  'STRINGS': ['Donald Trump', 'Trump', 'trumps'],
  'COUNT': 4,
  'RANK': 1},
 {'PROMOTED_STRING': 'joe biden',
  'STRINGS': ['Bide', 'Biden', 'J. biden', 'joe biden'],
  'COUNT': 4,
  'RANK': 1},
 {'PROMOTED_STRING': 'Christopher c . miller',
  'STRINGS': ['Christopher c . miller', 'miller'],
  'COUNT': 2,
  'RANK': 3},
 {'PROMOTED_STRING': 'Nancy Pelosi',
  'STRINGS': ['Nancy Pelosi', 'mark esper'],
  'COUNT': 2,
  'RANK': 3},
 {'PROMOTED_STRING': 'jim mattis',
  'STRINGS': ['jim mattis'],
  'COUNT': 1,
  'RANK': 5},
 {'PROMOTED_STRING': 'Donald', 'STRINGS': ['Donald'], 'COUNT': 1, 'RANK': 5}]

Background

fuzzup is developed as a part of Ekstra Bladet’s activities on Platform Intelligence in News (PIN). PIN is an industrial research project that is carried out in collaboration between the Technical University of Denmark, University of Copenhagen and Copenhagen Business School with funding from Innovation Fund Denmark. The project runs from 2020-2023 and develops recommender systems and natural language processing systems geared for news publishing, some of which are open sourced like fuzzup.

Read more

The detailed documentation and motivation for fuzzup including code references and extended workflow examples can be accessed here.

Contact

We hope, that you will find fuzzup useful.

Please direct any questions and feedbacks to us!

If you want to contribute (which we encourage you to), open a PR.

If you encounter a bug or want to suggest an enhancement, please open an issue.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fuzzup-0.0.10.tar.gz (4.8 kB view details)

Uploaded Source

Built Distribution

fuzzup-0.0.10-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file fuzzup-0.0.10.tar.gz.

File metadata

  • Download URL: fuzzup-0.0.10.tar.gz
  • Upload date:
  • Size: 4.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9

File hashes

Hashes for fuzzup-0.0.10.tar.gz
Algorithm Hash digest
SHA256 853292a36d4e907274b50a114bfde955b4eb81b432af5e805aa701c369883776
MD5 878bf4ecfdb9347aec3144ff12b95f19
BLAKE2b-256 ec0cef7351d4d96164bdce661eeaa473f381b7e9f4d456a0d76d90dfb4baf9f0

See more details on using hashes here.

File details

Details for the file fuzzup-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: fuzzup-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.9

File hashes

Hashes for fuzzup-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 e7c129ee3db3fd55864a40ce73d2e57448050daf9475f92e59aa35f3eca8c0fa
MD5 3d8285765c24e484b5c24bb63bbbb99a
BLAKE2b-256 65d35d35fbb63cb61012fc615300cfea408057690fe34fdc651b56da7229874b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page