Skip to main content

Fuzzy logic tool box as matlab

Project description

FuzzyLogic library

Authors: V.S. Luferov

Fuzzy Variables

Fuzzy Rules

subtract clusteting

(Data for su/examples/subclust.m.csv)[/examples/subclust.m.csv]

import numpy as np
from pprint import pprint
from fuzzy_logic.clustering import SubtractClustering
import csv


data = np.zeros([3, 600])
with open('m.csv') as f:
    spamreader = csv.reader(f, delimiter=',')
    for i, row in enumerate(spamreader):
        data[0, i] = float(row[0])
        data[1, i] = float(row[1])
        data[2, i] = float(row[2])

sc = SubtractClustering(data, np.array([0.6] * 3))
pprint(sc())

Mamdani Fuzzy System

from pprint import pprint
from fuzzy_logic.terms import Term
from fuzzy_logic.variables import FuzzyVariable
from fuzzy_logic.mamdani_fs import MamdaniFuzzySystem
from fuzzy_logic.mf import TriangularMF

t1 = Term('mf1', TriangularMF(0, 0, 0.5))
t2 = Term('mf2', TriangularMF(0, 0.5, 1))
t3 = Term('mf3', TriangularMF(0.5, 1, 1))
input1: FuzzyVariable = FuzzyVariable('input1', 0, 1, t1, t2, t3)
input2: FuzzyVariable = FuzzyVariable(
    'input2', 0, 1,
    Term('mf1', TriangularMF(0, 0, 0.5)),
    Term('mf2', TriangularMF(0, 0.5, 1)),
    Term('mf3', TriangularMF(0.5, 1, 1))
)
output = FuzzyVariable(
    'output', 0, 1,
    Term('mf1', TriangularMF(0, 0, 0.5)),
    Term('mf2', TriangularMF(0, 0.5, 1)),
    Term('mf3', TriangularMF(0.5, 1, 1))
)

mf: MamdaniFuzzySystem = MamdaniFuzzySystem([input1, input2], [output])
mf.rules.append(mf.parse_rule('if (input1 is mf1) and (input2 is mf1) then (output is mf1)'))
mf.rules.append(mf.parse_rule('if (input1 is mf2) and (input2 is mf2) then (output is mf2)'))
result = mf.calculate({input1: 0.45, input2: 0.45})
pprint(result)

Sugeno Fuzzy System

from pprint import pprint
from fuzzy_logic.terms import Term
from fuzzy_logic.variables import FuzzyVariable, SugenoVariable, LinearSugenoFunction
from fuzzy_logic.sugeno_fs import SugenoFuzzySystem
from fuzzy_logic.mf import TriangularMF

t1: Term = Term('mf1', TriangularMF(0, 0, 0.5))
t2: Term = Term('mf2', TriangularMF(0, 0.5, 1))
t3: Term = Term('mf3', TriangularMF(0.5, 1, 1))

input1: FuzzyVariable = FuzzyVariable('input1', 0, 1, t1, t2, t3)
input2: FuzzyVariable = FuzzyVariable(
    'input2', 0, 1,
    Term('mf1', TriangularMF(0, 0, 0.5)),
    Term('mf2', TriangularMF(0, 0.5, 1)),
    Term('mf3', TriangularMF(0.5, 1, 1))
)
output: SugenoVariable = SugenoVariable(
    'output',
    LinearSugenoFunction('mf1', {input1: 0.1, input2: 0.3}, 0.5),
    LinearSugenoFunction('mf2', {input1: 0.4, input2: 0.2}, 0.7)
)

mf: SugenoFuzzySystem = SugenoFuzzySystem([input1, input2], [output])
mf.rules.append(mf.parse_rule('if (input1 is mf1) and (input2 is mf1) then (output is mf1)'))
mf.rules.append(mf.parse_rule('if (input1 is mf2) and (input2 is mf2) then (output is mf2)'))
result = mf.calculate({input1: 0.45, input2: 0.45})
pprint(result)

Anfis

import numpy as np
from pprint import pprint
from fuzzy_logic.anfis import Anfis

x: np.ndarray = np.array([
    [.1, .3, .5, .7, .9],
    [.1, .2, .4, .6, .8]
])

y: np.ndarray = np.array([.01, .06, .2, .42,  .72])

anfis: Anfis = Anfis(x, y, .5)
anfis.train()
pprint(f'{anfis.calculate([.2, .3])} == {.2 * .3}')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fuzzy_logic_toolbox-1.0.2.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

fuzzy_logic_toolbox-1.0.2-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file fuzzy_logic_toolbox-1.0.2.tar.gz.

File metadata

  • Download URL: fuzzy_logic_toolbox-1.0.2.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for fuzzy_logic_toolbox-1.0.2.tar.gz
Algorithm Hash digest
SHA256 33be3161910c4fed60f714677b88a42ff6c9445211ee5b3523d235b0b1148a19
MD5 f7739190b2b00aecc64b5e1433226e05
BLAKE2b-256 8fd65258d7b9696c68519751c85ed294aaee008402f73b454dd206743bffa47b

See more details on using hashes here.

File details

Details for the file fuzzy_logic_toolbox-1.0.2-py3-none-any.whl.

File metadata

  • Download URL: fuzzy_logic_toolbox-1.0.2-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.4

File hashes

Hashes for fuzzy_logic_toolbox-1.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b09ebead3a103036a69b8189b0f0e7940fda1f211533f1314c1b3bffe7681efe
MD5 eb3ca240d08a7f208f18cbd584095cb8
BLAKE2b-256 5ae907dc8c06467aac05130afe1752b8c6bca35e886c609f05d89699cebd4890

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page