Skip to main content

Fuzzy matching in pandas using csvmatch

Project description

fuzzy_pandas

A razor-thin layer over csvmatch that allows you to do fuzzy mathing with pandas dataframes.

Installation

pip install fuzzy_pandas

Usage

To borrow 100% from the original repo, say you have one CSV file such as:

name,location,codename
George Smiley,London,Beggerman
Percy Alleline,London,Tinker
Roy Bland,London,Soldier
Toby Esterhase,Vienna,Poorman
Peter Guillam,Brixton,none
Bill Haydon,London,Tailor
Oliver Lacon,London,none
Jim Prideaux,Slovakia,none
Connie Sachs,Oxford,none

And another such as:

Person Name,Location
Maria Andreyevna Ostrakova,Russia
Otto Leipzig,Estonia
George SMILEY,London
Peter Guillam,Brixton
Konny Saks,Oxford
Saul Enderby,London
Sam Collins,Vietnam
Tony Esterhase,Vienna
Claus Kretzschmar,Hamburg

You can then find which names are in both files:

import pandas as pd
import fuzzy_pandas as fpd

df1 = pd.read_csv("data1.csv")
df2 = pd.read_csv("data2.csv")

matches = fpd.fuzzy_merge(df1, df2,
                          left_on=['name'],
                          right_on=['Person Name'],
                          ignore_case=True,
                          keep='match')

print(matches)
. name Person Name
0 George Smiley George SMILEY
1 Peter Guillam Peter Guillam

Options

Dumping this out of the code itself, apologies for lack of pretty formatting.

  • left : DataFrame
  • right : DataFrame
    • Object to merge left with
  • on : str or list
    • Column names to compare. These must be found in both DataFrames.
  • left_on : str or list
    • Column names to compare in the left DataFrame.
  • right_on : str or list
    • Column names to compare in the right DataFrame.
  • left_cols : list, default None
    • List of columns to preserve from the left DataFrame.
    • Defaults to left_on.
  • right_cols : list, default None
    • List of columns to preserve from the right DataFrame.
    • Defaults to right_on.
  • method : str or list, default 'exact'
    • Perform a fuzzy match, and an optional specified algorithm.
    • Multiple algorithms can be specified which will apply to each field respectively.
    • Options:
      • exact: exact matches
      • levenshtein: string distance metric
      • jaro: string distance metric
      • metaphone: phoenetic matching algorithm
      • bilenko: prompts for matches
  • threshold : float or list, default 0.6
    • The threshold for a fuzzy match as a number between 0 and 1. Multiple numbers will be applied to each field respectively.
  • ignore_case : bool, default False
    • Ignore case (default is case-sensitive)
  • ignore_nonalpha : bool, default False
    • Ignore non-alphanumeric characters
  • ignore_nonlatin : bool, default False
    • Ignore characters from non-latin alphabets. Accented characters are compared to their unaccented equivalent
  • ignore_order_words : bool, default False
    • Ignore the order words are given in
  • ignore_order_letters : bool, default False
    • Ignore the order the letters are given in, regardless of word order
  • ignore_titles : bool, default False
    • Ignore a predefined list of name titles (such as Mr, Ms, etc)
  • join : { 'inner', 'left-outer', 'right-outer', 'full-outer' }

For more how-to information, check out [the examples folder](https://github.com/jsoma/fuzzy_pandas/tree/master/examples) or the [the original repo](https://github.com/maxharlow/csvmatch).

Project details


Release history Release notifications | RSS feed

This version

0.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fuzzy_pandas-0.1.tar.gz (3.9 kB view details)

Uploaded Source

Built Distribution

fuzzy_pandas-0.1-py3-none-any.whl (5.2 kB view details)

Uploaded Python 3

File details

Details for the file fuzzy_pandas-0.1.tar.gz.

File metadata

  • Download URL: fuzzy_pandas-0.1.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.18.0 CPython/3.6.8

File hashes

Hashes for fuzzy_pandas-0.1.tar.gz
Algorithm Hash digest
SHA256 a9ffdfb327829d11dc4a15e3b049dcdebd7622771cdd33bad6adb56b848fced3
MD5 70b0e9aa8b147a283bbcf0e2e7f6b61f
BLAKE2b-256 371ce0e1ea616ff1d09a33b53915258dd5e4cf586aed6237358e3312a5c90be6

See more details on using hashes here.

File details

Details for the file fuzzy_pandas-0.1-py3-none-any.whl.

File metadata

  • Download URL: fuzzy_pandas-0.1-py3-none-any.whl
  • Upload date:
  • Size: 5.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.18.0 CPython/3.6.8

File hashes

Hashes for fuzzy_pandas-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d4454dac4c9cf2e6d8fe9245eebcdde9312d52e4caea814b79a901ef6255558d
MD5 4bc903e326cc9755d30a417b03787bbe
BLAKE2b-256 dc70c9de848dea88eb02ecb7b4993d188789fe35857f5b3b6dc616d957c55769

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page