A numpy implementation of Robust Rank Correlation Coefficients.
Project description
fuzzycorr
A numpy
implementation of Robust Rank Correlation Coefficients (fuzzy correlation) based on paper:
Bodenhofer, U., and F. Klawonn. "Robust rank correlation coefficients on the basis of fuzzy."
Mathware & Soft Computing 15.1 (2008): 5-20.
This implementation is experimental and need future optimization and testing.
Installation
This package will be avaliable soon on pip
.
Basic usage
from fuzzycorr import fuzzy_correlation_factory
from fuzzycorr.strict_orderings import lukasiewicz_strict_ordering_factory
from fuzzycorr.t_norms import godel
# create strict fuzzy ordering or supply own one
strict_ordering = lukasiewicz_strict_ordering_factory(r=0.2)
# create fuzzy correlation function with tnorm
fuzzy_corr = fuzzy_correlation_factory(strict_ordering, godel)
# load data
x = np.random.random(10)
y = np.random.random(10)
# calculate fuzzy correlation
fuzzy_corr(x, y)
Visit example Jupiter Notebook.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
fuzzycorr-0.1.1.tar.gz
(3.8 kB
view details)
File details
Details for the file fuzzycorr-0.1.1.tar.gz
.
File metadata
- Download URL: fuzzycorr-0.1.1.tar.gz
- Upload date:
- Size: 3.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ed402847427878d8f118f633984a0bc9ed2515dc3db3abd4a207163074019e0c |
|
MD5 | ae3e61b93697c79a1a2eb63d235ca218 |
|
BLAKE2b-256 | 90732050d74eeb4f5814c1189622a9774a04e62b7e0f0fcce61c211973ee119c |