Skip to main content

No project description provided

Project description

GitHub Repo stars GitHub forks GitHub language count GitHub repo size GitHubPyPI - Downloads PyPI - Python Version

FuzzyLearn

FuzzyLearn is a new estimator for creating classification and regression estimators using fuzzy set concept. Some of it classes use Optuna and Ray tune Scikit-Learn API to tune most of its hyper-parameters.

Installation

FuzzyLearn package is available on PyPI and can be installed with pip:

pip install fuzzylearn

Example 1: Adult Dataset (Use FuzzyLearn as a Classifier)

from fuzzylearn.classification.fast.fast import FLClassifier
from sklearn.metrics import classification_report,confusion_matrix,f1_score,roc_auc_score
from feature_engine.imputation import CategoricalImputer, MeanMedianImputer
from category_encoders import OrdinalEncoder
from sklearn.pipeline import Pipeline
import pandas as pd
import time
from sklearn.model_selection import train_test_split
import ray

urldata = "https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data"
# column names
col_names = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education-num",
    "marital-status",
    "occupation",
    "relationship",
    "race",
    "sex",
    "capital-gain",
    "capital-loss",
    "hours-per-week",
    "native-country",
    "label",
]
# read data
data = pd.read_csv(urldata, header=None, names=col_names, sep=",")
# use sample of 1000 rows of data only
data = data.sample(20000)
data.head()

data.loc[data["label"] == "<=50K", "label"] = 0
data.loc[data["label"] == " <=50K", "label"] = 0

data.loc[data["label"] == ">50K", "label"] = 1
data.loc[data["label"] == " >50K", "label"] = 1

data["label"] = data["label"].astype(int)

# Train test split

X = data.loc[:, data.columns != "label"]
y = data.loc[:, data.columns == "label"]


X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, stratify=y["label"], random_state=42
)


int_cols = X_train.select_dtypes(include=["int"]).columns.tolist()
float_cols = X_train.select_dtypes(include=["float"]).columns.tolist()
cat_cols = X_train.select_dtypes(include=["object"]).columns.tolist()


print('int_cols')
print(int_cols)
print('float_cols')
print(float_cols)
print('cat_cols')
print(cat_cols)


pipeline =Pipeline([
            # int missing values imputers
            ('intimputer', MeanMedianImputer(
                imputation_method='median', variables=int_cols)),
            # category missing values imputers
            ('catimputer', CategoricalImputer(variables=cat_cols)),
            #
            ('catencoder', OrdinalEncoder()),


 ])

X_train = pipeline.fit_transform(X_train,y_train)
X_test = pipeline.transform(X_test)


start_time = time.time()
model = FLClassifier(number_of_intervals=5,fuzzy_type="triangular",fuzzy_cut=0.3,threshold=0.7,metric = 'euclidean')
model.fit(X=X_train,y=y_train,X_valid=None,y_valid=None)
print("--- %s seconds for training ---" % (time.time() - start_time))

start_time = time.time()
y_pred = model.predict(X=X_test)
print("--- %s seconds for prediction ---" % (time.time() - start_time))

print("classification_report :")
print(classification_report(y_test, y_pred))
print("confusion_matrix : ")
print(confusion_matrix(y_test, y_pred))
print("roc_auc_score : ")
print(roc_auc_score(y_test, y_pred))
print("f1_score : ")
print(f1_score(y_test, y_pred))


Example 2: Adult Dataset (Use FuzzyLearn as a Classifier with Optuna optimization engine)

from fuzzylearn.classification.fast.optimum import FLOptunaClassifier 
from sklearn.metrics import classification_report,confusion_matrix,f1_score,roc_auc_score
from feature_engine.imputation import CategoricalImputer, MeanMedianImputer
from category_encoders import OrdinalEncoder
from sklearn.pipeline import Pipeline
import pandas as pd
import time
from sklearn.model_selection import train_test_split
import zipfile
import urllib.request


urldata = "https://archive.ics.uci.edu/static/public/2/adult.zip"
adult_data = 'fuzzylearn/data/adult.zip'
try:
    urllib.request.urlretrieve(urldata, adult_data)
except:
    print('error!')
with zipfile.ZipFile('fuzzylearn/data/adult.zip', 'r') as zip_ref:
    zip_ref.extractall('fuzzylearn/data/adult')
folder_path = 'fuzzylearn/data/adult/'
dataset_filename = 'adult.data'
#df = pd.read_csv(folder_path + dataset_filename)


# column names
col_names = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education-num",
    "marital-status",
    "occupation",
    "relationship",
    "race",
    "sex",
    "capital-gain",
    "capital-loss",
    "hours-per-week",
    "native-country",
    "label",
]
# read data
data = pd.read_csv(folder_path + dataset_filename, header=None, names=col_names, sep=",")
# use sample of 1000 rows of data only
data = data.sample(1000)
data.head()

data.loc[data["label"] == "<=50K", "label"] = 0
data.loc[data["label"] == " <=50K", "label"] = 0

data.loc[data["label"] == ">50K", "label"] = 1
data.loc[data["label"] == " >50K", "label"] = 1

data["label"] = data["label"].astype(int)

# Train test split

X = data.loc[:, data.columns != "label"]
y = data.loc[:, data.columns == "label"]


X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, stratify=y["label"], random_state=42
)


int_cols = X_train.select_dtypes(include=["int"]).columns.tolist()
float_cols = X_train.select_dtypes(include=["float"]).columns.tolist()
cat_cols = X_train.select_dtypes(include=["object"]).columns.tolist()


print('int_cols')
print(int_cols)
print('float_cols')
print(float_cols)
print('cat_cols')
print(cat_cols)

pipeline_steps = []
if len(int_cols) > 0 :
  # append int missing values imputers
  pipeline_steps.append(('intimputer', MeanMedianImputer(
                imputation_method='median', variables=int_cols)))
if len(float_cols) > 0 :
  # append float missing values imputers
  pipeline_steps.append(('floatimputer', MeanMedianImputer(
                imputation_method='mean', variables=float_cols)))
if len(cat_cols) > 0 :
  # append cat missing values imputers
  pipeline_steps.append(('catimputer', CategoricalImputer(variables=cat_cols)))
  # encode categorical variables
  pipeline_steps.append(('catencoder', OrdinalEncoder()))


pipeline =Pipeline(pipeline_steps)

X_train = pipeline.fit_transform(X_train,y_train)
X_test = pipeline.transform(X_test)


start_time = time.time()
model = FLOptunaClassifier(optimizer = "optuna",metrics_list=['cosine','manhattan'],fuzzy_type_list=['simple','triangular'],fuzzy_cut_range=[0.05,0.45],number_of_intervals_range=[5,14],threshold_range=[0.1,12.0], error_measurement_metric= 'f1_score(y_true, y_pred, average="weighted")',n_trials=100)
model.fit(X=X_train,y=y_train,X_valid=None,y_valid=None)
print("--- %s seconds for training ---" % (time.time() - start_time))
start_time = time.time()
y_pred = model.predict(X=X_test)
print("--- %s seconds for prediction ---" % (time.time() - start_time))

print("classification_report :")
print(classification_report(y_test, y_pred))
print("confusion_matrix : ")
print(confusion_matrix(y_test, y_pred))
print("roc_auc_score : ")
print(roc_auc_score(y_test, y_pred))
print("f1_score : ")
print(f1_score(y_test, y_pred))


Example 3: Adult Dataset (Use FuzzyLearn as a Classifier with Optuna optimization engine and Ray integrated.)

from fuzzylearn.classification.fast.optimum import FLOptunaClassifier 
from sklearn.metrics import classification_report,confusion_matrix,f1_score,roc_auc_score
from feature_engine.imputation import CategoricalImputer, MeanMedianImputer
from category_encoders import OrdinalEncoder
from sklearn.pipeline import Pipeline
import pandas as pd
import time
from sklearn.model_selection import train_test_split
import zipfile
import urllib.request


urldata = "https://archive.ics.uci.edu/static/public/2/adult.zip"
adult_data = 'fuzzylearn/data/adult.zip'
try:
    urllib.request.urlretrieve(urldata, adult_data)
except:
    print('error!')
with zipfile.ZipFile('fuzzylearn/data/adult.zip', 'r') as zip_ref:
    zip_ref.extractall('fuzzylearn/data/adult')
folder_path = 'fuzzylearn/data/adult/'
dataset_filename = 'adult.data'
#df = pd.read_csv(folder_path + dataset_filename)


# column names
col_names = [
    "age",
    "workclass",
    "fnlwgt",
    "education",
    "education-num",
    "marital-status",
    "occupation",
    "relationship",
    "race",
    "sex",
    "capital-gain",
    "capital-loss",
    "hours-per-week",
    "native-country",
    "label",
]
# read data
data = pd.read_csv(folder_path + dataset_filename, header=None, names=col_names, sep=",")
# use sample of 1000 rows of data only
data = data.sample(1000)
data.head()

data.loc[data["label"] == "<=50K", "label"] = 0
data.loc[data["label"] == " <=50K", "label"] = 0

data.loc[data["label"] == ">50K", "label"] = 1
data.loc[data["label"] == " >50K", "label"] = 1

data["label"] = data["label"].astype(int)

# Train test split

X = data.loc[:, data.columns != "label"]
y = data.loc[:, data.columns == "label"]


X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, stratify=y["label"], random_state=42
)


int_cols = X_train.select_dtypes(include=["int"]).columns.tolist()
float_cols = X_train.select_dtypes(include=["float"]).columns.tolist()
cat_cols = X_train.select_dtypes(include=["object"]).columns.tolist()


print('int_cols')
print(int_cols)
print('float_cols')
print(float_cols)
print('cat_cols')
print(cat_cols)

pipeline_steps = []
if len(int_cols) > 0 :
  # append int missing values imputers
  pipeline_steps.append(('intimputer', MeanMedianImputer(
                imputation_method='median', variables=int_cols)))
if len(float_cols) > 0 :
  # append float missing values imputers
  pipeline_steps.append(('floatimputer', MeanMedianImputer(
                imputation_method='mean', variables=float_cols)))
if len(cat_cols) > 0 :
  # append cat missing values imputers
  pipeline_steps.append(('catimputer', CategoricalImputer(variables=cat_cols)))
  # encode categorical variables
  pipeline_steps.append(('catencoder', OrdinalEncoder()))


pipeline =Pipeline(pipeline_steps)

X_train = pipeline.fit_transform(X_train,y_train)
X_test = pipeline.transform(X_test)


start_time = time.time()
model = FLOptunaClassifier(optimizer = "optuna_ray",metrics_list=['cosine','manhattan'],fuzzy_type_list=['simple','triangular'],fuzzy_cut_range=[0.05,0.45],number_of_intervals_range=[5,14],threshold_range=[0.1,12.0], error_measurement_metric= 'f1_score(y_true, y_pred, average="weighted")',n_trials=100)
model.fit(X=X_train,y=y_train,X_valid=None,y_valid=None)
print("--- %s seconds for training ---" % (time.time() - start_time))
start_time = time.time()
y_pred = model.predict(X=X_test)
print("--- %s seconds for prediction ---" % (time.time() - start_time))

print("classification_report :")
print(classification_report(y_test, y_pred))
print("confusion_matrix : ")
print(confusion_matrix(y_test, y_pred))
print("roc_auc_score : ")
print(roc_auc_score(y_test, y_pred))
print("f1_score : ")
print(f1_score(y_test, y_pred))




There are some more examples available in the examples webpage.

License

Licensed under the BSD 2-Clause License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fuzzylearn-1.2.0.tar.gz (21.5 kB view details)

Uploaded Source

Built Distribution

fuzzylearn-1.2.0-py3-none-any.whl (46.1 kB view details)

Uploaded Python 3

File details

Details for the file fuzzylearn-1.2.0.tar.gz.

File metadata

  • Download URL: fuzzylearn-1.2.0.tar.gz
  • Upload date:
  • Size: 21.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.5 Linux/5.15.49-linuxkit

File hashes

Hashes for fuzzylearn-1.2.0.tar.gz
Algorithm Hash digest
SHA256 8567445c1a21c314f95805cb3363617051527155eb9f071b09834d2e9655b2a1
MD5 d3f101f01ca46c6426ba3298937d9144
BLAKE2b-256 4fb91d9f1fad1e8c2c56ca9f2a7498a049555330f21ec27dfbbe00898cfe4685

See more details on using hashes here.

File details

Details for the file fuzzylearn-1.2.0-py3-none-any.whl.

File metadata

  • Download URL: fuzzylearn-1.2.0-py3-none-any.whl
  • Upload date:
  • Size: 46.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.5 Linux/5.15.49-linuxkit

File hashes

Hashes for fuzzylearn-1.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6bb8cf4ef0e43b75606160460d4579871a865034d46d918e4181f96b817debf3
MD5 ea889027e3383fedeb67c649f49f1958
BLAKE2b-256 57addd3b62b6bf7ddd9c07bc11a38d56b5a9cc3cec5d8dc4777282bef403ae07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page