Skip to main content

Run ANTs antsLongitudinalCorticalThickness.sh script

Project description

ANTs DBM Longitudinal

A Flywheel gear wrapping ANTs antsLongitudinalCorticalThickness.sh script. This script creates a Single Subject Template from all the anatomical images and time point based template.

Usage

This gear should be run on the Subject level.

Inputs

  • registered_predefined_atlases (file): Registered atlases to a population based template.
<working_dir_name>
└── <template_folder_name>
    ├── Priors2
    │   ├── <nifti-file-name>
    │   ├── <nifti-file-name>
    │   ├── <nifti-file-name>
    │   ├── <nifti-file-name>
    │   ├── <nifti-file-name>
    │   └── <nifti-file-name>
    ├── brain_extraction_probability_mask
    │   └── <nifti-file-name>
    ├── brain_segmentation_template
    │   └── <nifti-file-name>
    ├── extraction_registration_mask
    │   └── <nifti-file-name>
    └── t1_registration_template
        └── <nifti-file-name>

As shown above, each directory should be labeled with one of the following names:

  • Priors2
  • brain_extraction_probability_mask
  • brain_segmentation_template
  • extraction_registration_mask
  • t1_registration_template

Within each directory, it should contain only ONE template/mask image, except for the Priors2 directory.

Note: If registered predefined atlases template is not provided, the gear will use the default atlases template which can be configured in the gear config (Default: OASIS-30_Atropos_template). Note: If registered predefined atlases template is not provided, the gear will use the default atlases template which can be configured in the gear config (Default: OASIS-30_Atropos_template).

Configuration

  • debug (boolean, default: False): Include debug statements in output.
  • image_dimension (int, default: 3): 2 or 3 (for 2- or 3-dimensional image)
  • atropos_iteration (int, default: 5): Number of iterations within Atropos.
  • denoise_anatomical_image (int, default: 1): Denoise anatomical images.
  • number_of_modalities (int, default: 1): Number of modalities used to construct the template: For example,if one wanted to use multiple modalities consisting of T1, T2, and FA components, it will be 3 modalities.
  • rigid_template_update_component (int, default: 0): Update the single-subject template with the full affine transform (default 0).If 1, the rigid component of the affine transform will be used to update the template. Using the rigid component is desireable to reduce bias, but variations in the origin or head position across time points can cause the template head to drift out of the field of view.
  • rigid_alignment_to_SST (int, default: 0): If 1, register anatomical images to the single-subject template before processing with antsCorticalThickness. This potentially reduces bias caused by variable orientation and voxel spacing
  • input_regex (str, default: ".*nii\.gz"): Regular expression that matches files to be used as anatomical image inputs. (Default '.*nii\.gz'). https://en.wikipedia.org/wiki/Regular_expression.
  • input_tags (str, default: ""): Tag(s) that matches files to be used as anatomical image inputs. When multiple tags are specified, they must be comma separated (e.g. anatomical,ANTsLongitudinal)
  • atlases_template (str, default: "OASIS-30_Atropos_template"): If predefined atlases are not provided as an input, the gear will use this as the default predefined atlas template.

Contributing

For more information about how to get started contributing to that gear, checkout CONTRIBUTING.md.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file fw_gear_ants_dbm_longitudinal-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for fw_gear_ants_dbm_longitudinal-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 f305fd5722390ad38a4177e896e38447298156ad6290ade2da04402e53ed94a7
MD5 0d33b49260ba3f98c7346d798c4f27db
BLAKE2b-256 b11202d2e4dc00c0022aaa972667b01fc2eac3824953fd26bc506b50ca00bdc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page