Skip to main content

Forward-time population genetic simulation in Python

Project description

This is the README for fwdpy11, which is a Python package for forward-time population genetic simulation. It uses fwdpp as its C++ back-end.

Build status

Main:

https://github.com/molpopgen/fwdpy11/workflows/Tests/badge.svg?branch=main https://github.com/molpopgen/fwdpy11/workflows/UbuntuStressTest/badge.svg?branch=main

Development:

https://github.com/molpopgen/fwdpy11/workflows/Tests/badge.svg?branch=dev https://github.com/molpopgen/fwdpy11/workflows/UbuntuStressTest/badge.svg?branch=dev

Conda status

https://anaconda.org/bioconda/fwdpy11/badges/version.svg https://anaconda.org/bioconda/fwdpy11/badges/platforms.svg

Miscellaneous

Python code style:

https://img.shields.io/badge/code%20style-black-000000.svg

Features

  • Pickle-able population objects

  • Parallel computation via multiprocessing or concurrent.futures.

  • Custom temporal samplers to analyze populations during a simulation may be written in pure Python.

  • Flexible interface for simulating models with multiple populations.

Documentation

The manual can be found here.

License

GPLv3 or later (See COPYING)

Supported Python version

fwdpy11 is written for Python 3. We will not modify the package to be compatible with Python 2.7.

Dependencies and installation

These topics are covered in the user manual:

Citation

If you use this software for research, please cite the following publications:

  • Kevin R Thornton. Polygenic adaptation to an environmental shift: temporal dynamics of variation under gaussian stabilizing selection and additive effects on a single trait. Genetics, 213(4):1513–1530, December 2019.

  • Kevin R Thornton. A c++ template library for efficient forward-time population genetic simulation of large populations. Genetics, 198(1):157–166, September 2014.

This software was developed for the first paper. The second paper describes a key part of this software’s back end.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fwdpy11-0.24.2.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

fwdpy11-0.24.2-cp312-cp312-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

fwdpy11-0.24.2-cp312-cp312-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

fwdpy11-0.24.2-cp312-cp312-macosx_10_13_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

fwdpy11-0.24.2-cp311-cp311-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

fwdpy11-0.24.2-cp311-cp311-macosx_11_0_arm64.whl (3.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

fwdpy11-0.24.2-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

fwdpy11-0.24.2-cp310-cp310-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

fwdpy11-0.24.2-cp39-cp39-manylinux_2_28_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

File details

Details for the file fwdpy11-0.24.2.tar.gz.

File metadata

  • Download URL: fwdpy11-0.24.2.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for fwdpy11-0.24.2.tar.gz
Algorithm Hash digest
SHA256 17647e1c6015e1d3ed4bd36dbfc1cd25f14677b9c3fb205bbee4ab153df4f3ed
MD5 a908f42b3cc60f8362fe92ab75ffcfbe
BLAKE2b-256 3e9da4ac3b8ac26dc092d558efabc56134b9dfc1621b0ed57ca67b75ddea12aa

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f88c9a5bb685de59b4d5a522f2f21e697087ca26d562aa77e53a591e3073e157
MD5 3ab024c029ab22abd0ce70b07edaeb85
BLAKE2b-256 9f390a961e9253562891f9dabae5178006e14b107c5d84166b2107609c4a2fe3

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 134243d13743c78980eccc5653ab684940eebd92fc10d22ec945d0163d8fbbdb
MD5 66b7a1bbfeea70ea586003b635b28358
BLAKE2b-256 e43c27a34816eda6edd062ed0d1953e850411891e7708941896b2949f8da5038

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bb34c5b58ab0e0f5589016d448b38dace9f2f061895021d32e99dedc1e3f5a50
MD5 fbe6e47c477efbd73f61a5b04a2797b6
BLAKE2b-256 e73c831e33e91d84c9a1a674ca85096a2b3e9e2b1222a1117f8ec5a8f5928a2f

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c6ed2c2c690f5cd2cd9428bba78f5cfb0d46cc9f33717435a029196e48675735
MD5 5111b960e6720058e02e767b22b2823f
BLAKE2b-256 271eef415de5c32bbed0b90bea6b154f0d6c55bcb949f91ccd44578c336ca015

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2eede664d966316f3990815aa42202f71d8421fe0a916d1b49c09b8f3c907934
MD5 c08284d2c017778ebfc94eff562c07fb
BLAKE2b-256 3eb2eaa5e958c9518c50927a0411259d0a61be5a027fe11730aaced11b98e4d2

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ba3b274d251e1abb0067b843f989368b54918baaaab292f3b9d316efc2906f8
MD5 90ee24701a67fde0d6dbef32b3e051b3
BLAKE2b-256 5473ed53ac1de20e9d16c8034a3dd38a356dadafc7edd88245a6867ba6e097fa

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d86192da5e6ec0d01fe696b8e45ad5c2aef212d58f73fc1548efdadc012c16bb
MD5 0a0dce73832a787ea65ff63a67fa917b
BLAKE2b-256 2b456ab6a493ce0e19ce94adcac2b0b5408151f4b7615a8ccfd3fc8440c779ea

See more details on using hashes here.

File details

Details for the file fwdpy11-0.24.2-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for fwdpy11-0.24.2-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 82a6bcd99c8c2d9058f0aabe0926c44ecd84e5c61539786a5433af0ee2e0e941
MD5 b84f97c479ec7a00057b2b906145d484
BLAKE2b-256 c0de3da998695e61536e6b970097255bf839f110db94afbbeebc98b942c76ea6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page