Skip to main content

Quickly build Explainable AI dashboards that show the inner workings of so-called "blackbox" machine learning models.

Project description

This package makes it convenient to quickly deploy a dashboard web app that explains the workings of a (scikit-learn compatible) fitted machine learning model. The dashboard provides interactive plots on model performance, feature importances, feature contributions to individual predictions, partial dependence plots, SHAP (interaction) values, visualisation of individual decision trees, etc.

The goal is manyfold:

  • Make it easy for data scientists to quickly inspect the inner workings and

    performance of their model with just a few lines of code

  • Make it possible for non data scientist stakeholders such as co-workers,

    managers, directors, internal and external watchdogs to interactively inspect the inner workings of the model without having to depend on a data scientist to generate every plot and table

  • Make it easy to build a custom application that explains individual

    predictions of your model for customers that ask for an explanation

  • Explain the inner workings of the model to the people working with

    model in a human-in-the-loop deployment so that they gain understanding what the model does do and does not do. This is important so that they can gain an intuition for when the model is likely missing information and may have to be overruled.

The dashboard includes:

  • SHAP values (i.e. what is the contribution of each feature to each

    individual prediction?)

  • Permutation importances (how much does the model metric deteriorate

    when you shuffle a feature?)

  • Partial dependence plots (how does the model prediction change when

    you vary a single feature?

  • Shap interaction values (decompose the shap value into a direct effect

    an interaction effects)

  • For Random Forests and xgboost models: visualization of individual trees

    in the ensemble.

  • Plus for classifiers: precision plots, confusion matrix, ROC AUC plot,

    PR AUC plot, etc

  • For regression models: goodness-of-fit plots, residual plots, etc.

The library is designed to be modular so that it is easy to design your own custom dashboards so that you can focus on the layout and project specific textual explanations of the dashboard. (i.e. design it so that it will be interpretable for business users in your organization, not just data scientists)

A deployed example can be found at http://titanicexplainer.herokuapp.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fwexplainerdashboard-0.3.6.tar.gz (271.6 kB view details)

Uploaded Source

File details

Details for the file fwexplainerdashboard-0.3.6.tar.gz.

File metadata

  • Download URL: fwexplainerdashboard-0.3.6.tar.gz
  • Upload date:
  • Size: 271.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.2

File hashes

Hashes for fwexplainerdashboard-0.3.6.tar.gz
Algorithm Hash digest
SHA256 c77c47be7d2a6d37fb84f43bdc9ab3c19c93695b7198d3a2c4b6ef5b636577e7
MD5 72c36d4b9518b7dbd348721110909b48
BLAKE2b-256 a7e4c166366871620a4336f98d94243f0f4f775ee6a50ead9266e0c650b981d8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page