Skip to main content

pYthOn Finite State Machine

Project description

|Build Status|

License

MIT licensed. All credits go to Jake Gordon for the original javascript implementation and to Mansour Behabadi for the python port.

Synopsis

This is basically Mansours’ implementation. But with 100% unittest coverage, so you can actually modify the source. It’s also on PyPi (pip install fysom) so you don’t need to copy his source and get updates/bugfixes easily, and has a fully-fledged module structure.

Installation

From your friendly neighbourhood cheeseshop

pip install fysom

Developer setup

This module uses the pythonbuilder.

git clone https://github.com/mriehl/fysom
cd fysom
virtualenv venv
. venv/bin/activate
pip install pybuilder
pyb install_dependencies

Or you could use pyb_init and run

pyb_init https://github.com/mriehl/fysom

Running the tests

pyb verify

Generating a setup.py

pyb
cd target/dist/fysom-1.0.8
./setup.py <whatever you want>

Looking at the coverage

pyb
cat target/reports/coverage

USAGE

Basics

from fysom import Fysom

fsm = Fysom({ 'initial': 'green',
              'events': [
                  {'name': 'warn', 'src': 'green', 'dst': 'yellow'},
                  {'name': 'panic', 'src': 'yellow', 'dst': 'red'},
                  {'name': 'calm', 'src': 'red', 'dst': 'yellow'},
                  {'name': 'clear', 'src': 'yellow', 'dst': 'green'} ] })

… will create an object with a method for each event:

  • fsm.warn() - transition from ‘green’ to ‘yellow’

  • fsm.panic() - transition from ‘yellow’ to ‘red’

  • fsm.calm() - transition from ‘red’ to ‘yellow’

  • fsm.clear() - transition from ‘yellow’ to ‘green’

along with the following members:

  • fsm.current - contains the current state

  • fsm.isstate(s) - return True if state s is the current state

  • fsm.can(e) - return True if event e can be fired in the current state

  • fsm.cannot(e) - return True if event s cannot be fired in the current state

Initialization

How the state machine should initialize can depend on your application requirements, so the library provides a number of simple options.

By default, if you don’t specify any initial state, the state machine will be in the ‘none’ state and you would need to provide an event to take it out of this state:

fsm = Fysom({'events': [
                {'name': 'startup', 'src': 'none',  'dst': 'green'},
                {'name': 'panic', 'src': 'green', 'dst': 'red'},
                {'name': 'calm', 'src': 'red', 'dst': 'green'}]})
print fsm.current # "none"
fsm.startup()
print fsm.current # "green"

If you specifiy the name of you initial event (as in all the earlier examples), then an implicit ‘startup’ event will be created for you and fired when the state machine is constructed:

fsm = Fysom({'initial': 'green',
             'events': [
                 {'name': 'panic', 'src': 'green', 'dst': 'red'},
                 {'name': 'calm', 'src': 'red', 'dst': 'green'}]})
print fsm.current # "green"

If your object already has a startup method, you can use a different name for the initial event:

fsm = Fysom({'initial': {'state': 'green', 'event': 'init'},
             'events': [
                 {'name': 'panic', 'src': 'green', 'dst': 'red'},
                 {'name': 'calm',  'src': 'red', 'dst': 'green'}]})
print fsm.current # "green"

Finally, if you want to wait to call the initial state transition event until a later date, you can defer it:

fsm = Fysom({'initial': {'state': 'green', 'event': 'init', 'defer': True},
             'events': [
                 {'name': 'panic', 'src': 'green', 'dst': 'red'},
                 {'name': 'calm',  'src': 'red',   'dst': 'green'}]})
print fsm.current # "none"
fsm.init()
print fsm.current # "green"

Of course, we have now come full circle, this last example pretty much functions the same as the first example in this section where you simply define your own startup event.

So you have a number of choices available to you when initializing your state machine.

Multiple source and destination states for a single event

fsm = Fysom({'initial': 'hungry',
             'events': [
                 {'name': 'eat', 'src': 'hungry', 'dst': 'satisfied'},
                 {'name': 'eat', 'src': 'satisfied', 'dst': 'full'},
                 {'name': 'eat', 'src': 'full', 'dst': 'sick'},
                 {'name': 'rest', 'src': ['hungry', 'satisfied', 'full', 'sick'], 'dst': 'hungry'}]})

This example will create an object with 2 event methods:

  • fsm.eat()

  • fsm.rest()

The rest event will always transition to the hungry state, while the eat event will transition to a state that is dependent on the current state.

NOTE the rest event in the above example can also be specified as multiple events with the same name if you prefer the verbose approach.

Callbacks

4 callbacks are available if your state machine has methods using the following naming conventions:

  • onbefore_event_ - fired before the event

  • onleave_state_ - fired when leaving the old state

  • onenter_state_ - fired when entering the new state

  • onafter_event_ - fired after the event

You can affect the event in 2 ways:

  • return False from an onbefore_event_ handler to cancel the event.

  • return False from an onleave_state_ handler to perform an asynchronous state transition (see next section)

For convenience, the 2 most useful callbacks can be shortened:

  • on_event_ - convenience shorthand for onafter_event_

  • on_state_ - convenience shorthand for onenter_state_

In addition, a generic onchangestate() calback can be used to call a single function for all state changes.

All callbacks will be passed one argument ‘e’ which is an object with following attributes:

  • fsm Fysom object calling the callback

  • event Event name

  • src Source state

  • dst Destination state

  • (any other keyword arguments you passed into the original event method)

Note that when you call an event, only one instance of ‘e’ argument is created and passed to all 4 callbacks. This allows you to preserve data across a state transition by storing it in ‘e’. It also allows you to shoot yourself in the foot if you’re not careful.

Callbacks can be specified when the state machine is first created:

def onpanic(e):
    print 'panic! ' + e.msg
def oncalm(e):
    print 'thanks to ' + e.msg
def ongreen(e):
    print 'green'
def onyellow(e):
    print 'yellow'
def onred(e):
    print 'red'
fsm = Fysom({'initial': 'green',
             'events': [
                 {'name': 'warn', 'src': 'green', 'dst': 'yellow'},
                 {'name': 'panic', 'src': 'yellow', 'dst': 'red'},
                 {'name': 'panic', 'src': 'green', 'dst': 'red'},
                 {'name': 'calm', 'src': 'red', 'dst': 'yellow'},
                 {'name': 'clear', 'src': 'yellow', 'dst': 'green'}],
             'callbacks': {
                 'onpanic': onpanic,
                 'oncalm': oncalm,
                 'ongreen': ongreen,
                 'onyellow': onyellow,
                 'onred': onred }})

fsm.panic(msg='killer bees')
fsm.calm(msg='sedatives in the honey pots')

Additionally, they can be added and removed from the state machine at any time:

def printstatechange(e):
    print 'event: %s, src: %s, dst: %s' % (e.event, e.src, e.dst)

del fsm.ongreen
del fsm.onyellow
del fsm.onred
fsm.onchangestate = printstatechange

Asynchronous state transitions

Sometimes, you need to execute some asynchronous code during a state transition and ensure the new state is not entered until you code has completed.

A good example of this is when you run a background thread to download something as result of an event. You only want to transition into the new state after the download is complete.

You can return False from your onleave_state_ handler and the state machine will be put on hold until you are ready to trigger the transition using the transition() method.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

fysom-1.0.8.tar.gz (5.7 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page