Skip to main content

gReLU is a python library to train, interpret, and apply deep learning models to DNA sequences

Project description

gReLU

gReLU is a Python library to train, interpret, and apply deep learning models to DNA sequences. Code documentation is available here.

Flowchart

Installation

To install from source:

git clone https://github.com/Genentech/gReLU.git
cd gReLU
pip install .

To install using pip:

pip install gReLU

Typical installation time including all dependencies is under 10 minutes.

To train or use transformer models containing flash attention layers, flash-attn needs to be installed first:

conda install -c conda-forge cudatoolkit-dev -y
pip install torch ninja
pip install flash-attn --no-build-isolation
pip install gReLU

Contributing

This project uses pre-commit. Please make sure to install it before making any changes:

pip install pre-commit
cd gReLU
pre-commit install

It is a good idea to update the hooks to the latest version:

pre-commit autoupdate

Additional requirements

If you want to use genome annotation features through the function grelu.io.genome.read_gtf, you will need to install the following UCSC utilities: genePredToBed, genePredToGtf, bedToGenePred, gtfToGenePred, gff3ToGenePred.

If you want to create bigWig files through the function grelu.data.preprocess.make_insertion_bigwig, you will need to install the following UCSC utilities: bedGraphToBigWig.

UCSC utilities can be installed from http://hgdownload.cse.ucsc.edu/admin/exe/, for example using the following commands:

rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedGraphToBigWig /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToBed /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/genePredToGtf /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/bedToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gtfToGenePred /usr/bin/
rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/gff3ToGenePred /usr/bin/

or via bioconda:

conda install -y \
bioconda::ucsc-bedgraphtobigwig \
bioconda::ucsc-genepredtobed    \
bioconda::ucsc-genepredtogtf    \
bioconda::ucsc-bedtogenepred    \
bioconda::ucsc-gtftogenepred    \
bioconda::ucsc-gff3togenepred

Citation

Please cite our preprint: https://www.biorxiv.org/content/10.1101/2024.09.18.613778v1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

grelu-1.0.3.post1.dev0.tar.gz (23.8 MB view details)

Uploaded Source

Built Distribution

gReLU-1.0.3.post1.dev0-py3-none-any.whl (1.8 MB view details)

Uploaded Python 3

File details

Details for the file grelu-1.0.3.post1.dev0.tar.gz.

File metadata

  • Download URL: grelu-1.0.3.post1.dev0.tar.gz
  • Upload date:
  • Size: 23.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.9

File hashes

Hashes for grelu-1.0.3.post1.dev0.tar.gz
Algorithm Hash digest
SHA256 83e6dce893000b28f15efef2c97f92db77e62a6ec3ea46316e49227a86b1dc32
MD5 bbfb94d42368fd03cfb07e2c3d08a9be
BLAKE2b-256 54a25a818313d988cb705e9751b0cb3518bcdddf0ca72cc5d524cc33180e06ea

See more details on using hashes here.

File details

Details for the file gReLU-1.0.3.post1.dev0-py3-none-any.whl.

File metadata

File hashes

Hashes for gReLU-1.0.3.post1.dev0-py3-none-any.whl
Algorithm Hash digest
SHA256 b67a664dd3e26efe04653aa265f8ac87f155f9cef62625a9613ad1aef6e01d80
MD5 882ff8fa5bc7c4950ef106384043e906
BLAKE2b-256 becec30b405a1d538cbe77663f59d265bc00a8cfdf87ca9a7279051ecbd06932

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page