Skip to main content

Galactic Dynamics in python

Project description

Galactic Dynamics in python

galpy is a Python package for galactic dynamics. It supports orbit integration in a variety of potentials, evaluating and sampling various distribution functions, and the calculation of action-angle coordinates for all static potentials. galpy is an astropy affiliated package and provides full support for astropy’s Quantity framework for variables with units.

AUTHOR

Jo Bovy - bovy at astro dot utoronto dot ca

See AUTHORS.txt for a full list of contributors.

If you find this code useful in your research, please let me know. If you use galpy in a publication, please cite Bovy (2015) and link to http://github.com/jobovy/galpy. See the acknowledgement documentation section for a more detailed guide to citing parts of the code. Thanks!

LOOKING FOR HELP?

The latest documentation can be found here. You can also join the galpy slack community for any questions related to galpy; join here.

If you find any bug in the code, please report these using the Issue Tracker or by joining the galpy slack community.

If you are having issues with the installation of galpy, please first consult the Installation FAQ.

PYTHON VERSIONS AND DEPENDENCIES

galpy supports Python 3. Specifically, galpy supports Python 3.8, 3.9, 3.10, and 3.11. GitHub Actions CI builds regularly check support for Python 3.11 (and of 3.8, 3.9, and 3.11 using a more limited, core set of tests) on Linux and Windows (and 3.11 on Mac OS). Python 2.7 is no longer supported.

This package requires Numpy, Scipy, and Matplotlib. Certain advanced features require the GNU Scientific Library (GSL), with action calculations requiring version 1.14 or higher. Other optional dependencies include:

  • Support for providing inputs and getting outputs as Quantities with units is provided through astropy.
  • Querying SIMBAD for the coordinates of an object in the Orbit.from_name initialization method requires astroquery.
  • Displaying a progress bar for certain operations (e.g., orbit integration of multiple objects at once) requires tqdm.
  • Plotting arbitrary functions of Orbit attributes requires numexpr.
  • Speeding up the evaluation of certain functions in the C code requires numba.
  • Constant-anisotropy DFs in galpy.df.constantbetadf require JAX.
  • Use of SnapshotRZPotential and InterpSnapshotRZPotential requires pynbody.

Other parts of the code may require additional packages and you will be alerted by the code if they are not installed.

CONTRIBUTING TO GALPY

If you are interested in contributing to galpy's development, take a look at this brief guide on the wiki. This will hopefully help you get started!

Some further development notes can be found on the wiki. This includes a list of small and larger extensions of galpy that would be useful here as well as a longer-term roadmap here. Please let the main developer know if you need any help contributing!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

galpy-1.9.1.tar.gz (854.9 kB view details)

Uploaded Source

Built Distributions

galpy-1.9.1-cp312-cp312-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

galpy-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

galpy-1.9.1-cp312-cp312-macosx_11_0_arm64.whl (8.0 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

galpy-1.9.1-cp312-cp312-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

galpy-1.9.1-cp311-cp311-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

galpy-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

galpy-1.9.1-cp311-cp311-macosx_11_0_arm64.whl (8.0 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

galpy-1.9.1-cp311-cp311-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

galpy-1.9.1-cp310-cp310-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

galpy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

galpy-1.9.1-cp310-cp310-macosx_11_0_arm64.whl (8.0 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

galpy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

galpy-1.9.1-cp39-cp39-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

galpy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

galpy-1.9.1-cp39-cp39-macosx_11_0_arm64.whl (8.0 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

galpy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

galpy-1.9.1-cp38-cp38-win_amd64.whl (798.8 kB view details)

Uploaded CPython 3.8 Windows x86-64

galpy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

galpy-1.9.1-cp38-cp38-macosx_11_0_arm64.whl (8.0 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

galpy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl (17.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file galpy-1.9.1.tar.gz.

File metadata

  • Download URL: galpy-1.9.1.tar.gz
  • Upload date:
  • Size: 854.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1.tar.gz
Algorithm Hash digest
SHA256 962424a8d8180650019e816dc97aefa9eb4f6796594128a53d2e1004de3b03d7
MD5 e5c8678b6734b498b9427c61ba63bdff
BLAKE2b-256 0b4a6e895e2a494fea28b3cba582c018f29f6d0801718927b003a3bd97c8ef56

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: galpy-1.9.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 cccbe4c867bba65317af2f45596d1129e5b47e54b1e661a1ec2502173cfda494
MD5 27aa84b545af17c5cd1f76335626ccec
BLAKE2b-256 6936d3a8c2ff25fbd968413fd53c7d3b3a5044408ee1621eb73b021efb974d32

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 737d5390637623f0b0988b97eee1ebaab70ea922e3093c79d461b24ab4705bbc
MD5 cb7b215b53ed1546f72500382b69795e
BLAKE2b-256 d500015593cb23ffdbe0729b42a5b1564d5ad8270c978632e87d0d1ac0fef28f

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2259b97ff06dc2aff6b906e104725c674bb6b27b4278ccb4285eb09d342ac97c
MD5 f2cb655214cb2b11e8fa88984c445c45
BLAKE2b-256 97d5070aeb139f944eb53bef675f766e1cdcf195c0de319d1557e60d1180cc3f

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bd1877b5ef36cabb35ff73f4467c3ec43b04967400110c0253ea965a46cb5eed
MD5 6b0f159d1fdcf75fdbe647c2f6c1ba7c
BLAKE2b-256 740fecb9951cbfba9891f7135a09133b0dc3b0fa2084eaf86e01274d4fb87440

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: galpy-1.9.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e20b74479e7cea98f2030942627cf07fd76e913c39914526c3bc2f4b81c7e948
MD5 ade71f2b25295f455d37f43d0ad4b005
BLAKE2b-256 167f6474bc545abe42fbaf00f06eddcaf988b14ad8ea65bcd4a247cfce706fe8

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 aeacbd7a8155ae8e4576ed930b1874b4178563a855a1322edcf648a78d5f0cdc
MD5 d81b0e6652d27222c54ecce0d08a0264
BLAKE2b-256 c0437cd91528ced9428ddfa1b80c702426d2a5e874a3cdf17bfceec6ef06f9cc

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 08644529e57992f0d2b24e234ebb20bf3cb7f653b8a585d8349dced876f32214
MD5 a02c56e5fdcd88022425625440dc9167
BLAKE2b-256 95ad55b84efda097f99e5b08fc99f546f58889dc3b45115fae57e9b184bac761

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 67e1c450c31fca503c1747d68967711caee1547ef890a1ba43ee1b9558e97eb5
MD5 02750d2b071852d5af4e2285058d49a6
BLAKE2b-256 433abe09c696083ca8d2c887659f0fc25344683836142888ae7a4300b41c49e1

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: galpy-1.9.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ae199a975df8151d5c6d7742a5cb6949f18970cf075ef45244fadf3695f6fee0
MD5 223b5beca4075716f5768c530fe847b1
BLAKE2b-256 e80c8bbbec91969f6ffedcd69c05f7c54822fa7aa86aa71848ba303176fb9e44

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d91989142df6e5d40beeb1b8716910cb74e07f012fce8518a0724ade24b30ff
MD5 d7e7a884a41511702eb228b929f4d3bb
BLAKE2b-256 f1b23e90d8b1ff9f2db4e68a566ef956e34adf325d6994fb92d52f555978dd21

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53ea605c244c6ad525cb6c73a53f1ec853e2d78c0db9124c9ea6da2d0206ba70
MD5 5b42d89f832ab16b17d76f4c1b094f39
BLAKE2b-256 2ffbf5f243893d4bcbabb877178d0d813fba198b7d64b033e9453655531f42ae

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e6ffc288b8e036d3975259437b7f991a104c62aa7f0662fa3bb1fde4f98ada4
MD5 8ceb2394f5913d3b60c024f45891dceb
BLAKE2b-256 04f8a79d50a6d8bb0bffe42fa5aba29db08e72a5942ed80d8af1b76342c44264

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: galpy-1.9.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1d1198d47e76d91aa41a7abe2ef0f8c5214b5b9fe4d62e37288bf9647b084c98
MD5 ac1073801db57c0b531d26236f002988
BLAKE2b-256 26d75f366affdc4704db12cb68ba38efaba0e321fe6fd9d52b0188758a867be2

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08ca46dc93f641fdfa9b36565229b2361c79eeded55b4bf88fa8ecdd9439a6c1
MD5 7416497c4e85511cd1eb95deb413ce2c
BLAKE2b-256 80be488d4cd62df824dea4e13ccf8f5c4d8e2821bbcf4d67d89074a92bd2d8a9

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f4d3c697eb3099a19df91599f81b9a0f09b52cbd55bee4833ec365052346bd6
MD5 a3ff4d696658694458018048d085b562
BLAKE2b-256 4b042b3b986cf956b228ab0a83e1eefb9a6d7f8ae74b21151f5c339cc781c204

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a280522607bb2a7da7bb00d9c50bf5b2cca02d156853a76733f14c48ac260002
MD5 139b8100ba697f336d5c8ef692f2a65a
BLAKE2b-256 19ed8c7d4cbbc34f859000e95946a8f018310a2b8707708d1f958ef3819098fc

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: galpy-1.9.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 798.8 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for galpy-1.9.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 bcd35dbbc63fb9524787a7a765cacd98394275d91d60d2086ab614a68d87fe7c
MD5 f386cfa4bca1e36796e1d55405f88b9e
BLAKE2b-256 74dc7567f501571f7036ff59b1089ef9cf399952db0d3ccabc4da7d75e874236

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 839256f6e7f49dadc2b5f12b502fe92d774045db0e633c70d9265ed075bf2598
MD5 ebff2e38faa9c9f5ab240c4f67c1a741
BLAKE2b-256 534dedfb6bab250773df190b0b64005333ca84f971a4a8eb1fbaec2a5753e427

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9c3ec3e2b47ec8e295910364477147f5c2f9a0feed5b3b52efb3623ce838e756
MD5 c6c80aa1d6216847e67c8588a292773c
BLAKE2b-256 fd751f0978cc908b7d7006ebed1d89d3fd89d25f96163e830033b5ea5df306fe

See more details on using hashes here.

File details

Details for the file galpy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for galpy-1.9.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 083229cf1dc839b1e98d6b53f64dae9161d4cb5cf4c89b87f5175d832d078462
MD5 b1013cb32d527cb611df26e1d2c9a2e3
BLAKE2b-256 34ed948af72c3a1752a15c58abe2ab80f36db88b152c7b02451fd59a0fd1bb6f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page