Skip to main content

A package for automated machine learning based on scikit-learn.

Project description

GAMA logo

General Automated Machine learning Assistant
An automated machine learning tool based on genetic programming.
Make sure to check out the documentation.

Build Status codecov DOI


GAMA is an AutoML package for end-users and AutoML researchers. It generates optimized machine learning pipelines given specific input data and resource constraints. A machine learning pipeline contains data preprocessing (e.g. PCA, normalization) as well as a machine learning algorithm (e.g. Logistic Regression, Random Forests), with fine-tuned hyperparameter settings (e.g. number of trees in a Random Forest).

To find these pipelines, multiple search procedures have been implemented. GAMA can also combine multiple tuned machine learning pipelines together into an ensemble, which on average should help model performance. At the moment, GAMA is restricted to classification and regression problems on tabular data.

In addition to its general use AutoML functionality, GAMA aims to serve AutoML researchers as well. During the optimization process, GAMA keeps an extensive log of progress made. Using this log, insight can be obtained on the behaviour of the search procedure. For example, it can produce a graph that shows pipeline fitness over time: graph of fitness over time

Note: we temporarily disabled support for the GAMA Dashboard, we will add out-of-the-box visualization again later this year.

Installing GAMA

You can install GAMA with pip: pip install gama

Minimal Example

The following example uses AutoML to find a machine learning pipeline that classifies breast cancer as malign or benign. See the documentation for examples in classification, regression, using ARFF as input.

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, accuracy_score
from gama import GamaClassifier

if __name__ == '__main__':
    X, y = load_breast_cancer(return_X_y=True)
    X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)

    automl = GamaClassifier(max_total_time=180, store="nothing")
    print("Starting `fit` which will take roughly 3 minutes.")
    automl.fit(X_train, y_train)

    label_predictions = automl.predict(X_test)
    probability_predictions = automl.predict_proba(X_test)

    print('accuracy:', accuracy_score(y_test, label_predictions))
    print('log loss:', log_loss(y_test, probability_predictions))
    # the `score` function outputs the score on the metric optimized towards (by default, `log_loss`)
    print('log_loss', automl.score(X_test, y_test))

note: By default, GamaClassifier optimizes towards log_loss.

Citing

If you want to cite GAMA, please use our ECML-PKDD 2020 Demo Track publication.

@InProceedings{10.1007/978-3-030-67670-4_39,
author="Gijsbers, Pieter and Vanschoren, Joaquin",
editor="Dong, Yuxiao
and Ifrim, Georgiana
and Mladeni{\'{c}}, Dunja
and Saunders, Craig
and Van Hoecke, Sofie",
title="GAMA: A General Automated Machine Learning Assistant",
booktitle="Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track",
year="2021",
publisher="Springer International Publishing",
address="Cham",
pages="560--564",
abstract="The General Automated Machine learning Assistant (GAMA) is a modular AutoML system developed to empower users to track and control how AutoML algorithms search for optimal machine learning pipelines, and facilitate AutoML research itself. In contrast to current, often black-box systems, GAMA allows users to plug in different AutoML and post-processing techniques, logs and visualizes the search process, and supports easy benchmarking. It currently features three AutoML search algorithms, two model post-processing steps, and is designed to allow for more components to be added.",
isbn="978-3-030-67670-4"
}

License

The contents of this repository is under an Apache-2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gama-23.0.0.post1.tar.gz (68.0 kB view details)

Uploaded Source

Built Distribution

gama-23.0.0.post1-py3-none-any.whl (85.9 kB view details)

Uploaded Python 3

File details

Details for the file gama-23.0.0.post1.tar.gz.

File metadata

  • Download URL: gama-23.0.0.post1.tar.gz
  • Upload date:
  • Size: 68.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for gama-23.0.0.post1.tar.gz
Algorithm Hash digest
SHA256 0f9419a1795e8d8b48958e604e832d22d88f4d828723d370e45c4404f566293f
MD5 7314f8704b3282a7abde608d8bbd5084
BLAKE2b-256 b4acebb7999b483bd245d4fbd8b559c4175dd756eee385682ed06fd92b5fbc52

See more details on using hashes here.

File details

Details for the file gama-23.0.0.post1-py3-none-any.whl.

File metadata

  • Download URL: gama-23.0.0.post1-py3-none-any.whl
  • Upload date:
  • Size: 85.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.14

File hashes

Hashes for gama-23.0.0.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 5762808d13bf6c047982966b2453400394380bfa7ab94c7d58f41eb03ba03d8f
MD5 9074b9a81f4f4281cd8808cc69a92c90
BLAKE2b-256 b7c0271284a12fd697ff4949e8062f9c0cf87858ea3d330f0330a347a507354b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page