Skip to main content

GAMS Python API

Project description



gamsapi: powerful Python toolkit to manage GAMS (i.e., sparse) data and control GAMS solves

What is it?

gamsapi is a Python package that includes submodules to control GAMS, manipulate and transfer data to/from the GAMS modeling system (through GDX files or in-memory objects). This functionality is available from a variety of different Python interfaces including standard Python scripts and Jupyter Notebooks. We strive to make it as simple as possible for users to generate, debug, customize, and ultimately use data to solve optimization problems -- all while maintaining high performance.

Main Features

Here are just a few of the things that gamsapi does well:

  • Seamlessly integrates GAMS data requirements into standard data pipelines (i.e., Pandas, Numpy)
  • Link and harmonize data sets across different symbols
  • Clean/debug data before it enters the modeling environment
  • Customize the look and feel of the data (i.e., labeling conventions)
  • Bring data to GAMS from a variety of different starting points
  • Send model output to a variety of different data endpoints (SQL, CSV, Excel, etc.)
  • Automatic data reshaping and standardization -- will work to translate your data formats into the Pandas DataFrame standard
  • Control GAMS model solves and model specification

Where to get it

The source code is currently available with any typical GAMS system. No license is needed in order to use gamsapi. A license is necessary in order to solve GAMS models.

A free demo license is available!

Dependencies

Installing gamsapi will not install any third-party dependencies, as such, it only contains basic functionality. Users should modify this base installation by choosing extras to install -- extras are described in the documentation.

# from PyPI (with extra "transfer")
pip install gamsapi[transfer]
# from PyPI (with extras "transfer" and "magic")
pip install gamsapi[transfer,magic]
# from PyPI (include all dependencies)
pip install gamsapi[all]

Documentation

The official documentation is hosted on gams.com.

Getting Help

For usage questions, the best place to go to is GAMS. General questions and discussions can also take place on the GAMS World Forum.

Discussion and Development

If you have a design request or concern, please write to support@gams.com.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gamsapi-48.2.0.tar.gz (881.7 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

gamsapi-48.2.0-cp313-cp313-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.13Windows x86-64

gamsapi-48.2.0-cp313-cp313-manylinux_2_17_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

gamsapi-48.2.0-cp313-cp313-macosx_13_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.13macOS 13.0+ ARM64

gamsapi-48.2.0-cp313-cp313-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

gamsapi-48.2.0-cp312-cp312-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.12Windows x86-64

gamsapi-48.2.0-cp312-cp312-manylinux_2_17_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

gamsapi-48.2.0-cp312-cp312-macosx_13_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.12macOS 13.0+ ARM64

gamsapi-48.2.0-cp312-cp312-macosx_10_15_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

gamsapi-48.2.0-cp311-cp311-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.11Windows x86-64

gamsapi-48.2.0-cp311-cp311-manylinux_2_17_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

gamsapi-48.2.0-cp311-cp311-macosx_13_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 13.0+ ARM64

gamsapi-48.2.0-cp311-cp311-macosx_10_15_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

gamsapi-48.2.0-cp310-cp310-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.10Windows x86-64

gamsapi-48.2.0-cp310-cp310-manylinux_2_17_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

gamsapi-48.2.0-cp310-cp310-macosx_13_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 13.0+ ARM64

gamsapi-48.2.0-cp310-cp310-macosx_10_15_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

gamsapi-48.2.0-cp39-cp39-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.9Windows x86-64

gamsapi-48.2.0-cp39-cp39-manylinux_2_17_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

gamsapi-48.2.0-cp39-cp39-macosx_13_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 13.0+ ARM64

gamsapi-48.2.0-cp39-cp39-macosx_10_15_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

File details

Details for the file gamsapi-48.2.0.tar.gz.

File metadata

  • Download URL: gamsapi-48.2.0.tar.gz
  • Upload date:
  • Size: 881.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0.tar.gz
Algorithm Hash digest
SHA256 e11b8b8ebf994d01faff0f809fa88a73098d30e522c215ecfc5f9670699b7ccd
MD5 68fb019f6b4f864c8e9b0a251c15a9fe
BLAKE2b-256 073d293f645e744f6792b96607b41f663ca742fa3c96f5c1d4bbaebe90c8fc99

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: gamsapi-48.2.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 2cc4f1c6c70d63e0401f6f9b7ec73651114f5215bd9a62d5e8f21c5541ce417c
MD5 616eddcd89b8cdbc8fee600fbbe25811
BLAKE2b-256 8a848fe33991fae64f70a8c7a25d8cf592a004fb0123bd057285de7ce48b201c

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp313-cp313-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp313-cp313-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 060d3ca3634fcc045ac01ebefef90b94f95eb8307fb71dc489eec0fa5c846df4
MD5 b7bf1ee42eebd8acf1417c8e1d8e63f9
BLAKE2b-256 4ae1f0738d0dddd23409a5959190a32772b93f6d2d81668127faf9ff8cd3dc10

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 513ea9f20e9943e6de0984b64a652715dab0eaa2eec115da04bfa59e87135048
MD5 641bfd21faf79894b499818aa7a18b89
BLAKE2b-256 7a0eb79889ae551d7331f574397fbddbb59aca4862969179bbda0f3c4d25a3a1

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 2b2fd4c2cf9babd2d5cb978547af73d1f2a446d2b8fe783b7ad8b3d8359fcbb6
MD5 121813e8748ca0d871da46e72da6d62a
BLAKE2b-256 0d9c5a696b0e1b1f93c84a115d3b98843bda1c71ee3108ae78284990ad4fc8d6

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: gamsapi-48.2.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 09ed2534165dfdfb0ae0c21d61049a7c87743d6fad38880ce011582656ac11ce
MD5 1167d4eb9cbebacb9fa5c587f0d9dda8
BLAKE2b-256 23512aca634abff33709c7b2a54ef8077f679310ec554dfcf7e8cd20ea0eef9e

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp312-cp312-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp312-cp312-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1f317927e9a9f7b3ca7f2ff4d5d598d52a0d576ef218c7bff30347e73979ebb0
MD5 5a38086c782c07097f5d885203cfb5fe
BLAKE2b-256 52c6d810c12b5513b4318f8eb4490b722494f84e40772d7302574f40f116bf5a

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 838c2666803e794f202a51cd19cd28a6f89e36a1395ecb3008efd796a213fe48
MD5 abc56553ccc1c487142b2d2f26931ec6
BLAKE2b-256 63b532a300208e1ee8bd708dce0d669c69bc81bf0fce3a4cbf6a5e2503dc7105

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 dac3254b4c2b7ddb56dc238d2e820d75fc1c515a7833c0560601fccb3c936b03
MD5 413aa0b1d1e202d7d86aabab292c21f3
BLAKE2b-256 aa885e8e80286e1a042d7f3386eb382500a1f3e5046a5e82b1a98d3f45c35d01

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gamsapi-48.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 67cde7b34db637e29ee763f476e5d92e0972422d9c0d7915922759b1ac2a72cd
MD5 0a74d56134d4141fcc1babb3c1ddeb79
BLAKE2b-256 20416d37697ecf0c0923e3ce6c33a02d1d078cee73c86a1bfc97cba040ddfeb9

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp311-cp311-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp311-cp311-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 371b831aef8d7fb5df1115a10c4b68358fea3aad9676563519f8cc4a5521d57e
MD5 2935c302281288d2a47e35bdb2d45e96
BLAKE2b-256 feafb967298e16faeb496be1faf1693c63b3778a6337e2e81badb0791a5ba648

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 8629077773af76ce429c90132df5b66eeecb389d92344dbc09797b7b695ef4b4
MD5 56611c108aa1706b8e5a19239be5e3a9
BLAKE2b-256 30d1952403400d3d00d1ee5e28471f97f0d508fc5cd813ce92407cc439214a7b

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 68b3ac43cbd2ff745129af4580117b9c94d23a7916d481cbb1d888c9223e3dbf
MD5 d55a86037d4f662897272c81995f21dd
BLAKE2b-256 57f7f09fc999a91f3cba7e794311a3aa1916b3a3d1d8a054832663725ce575c7

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gamsapi-48.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f0fcc7505ee6dc346d289c6d9b606fe8c26c016e4900f5171aedc560c6588047
MD5 a73d446f2b76435074aa592b8901637c
BLAKE2b-256 a84bc90bbc45bd90e9d1442dc919f794c8378a92fa61971a4d9ab808bc40f48a

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp310-cp310-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp310-cp310-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 1635232e7a7f16cdf72874ed57e51d0a9ff678759fb692a971f9cbc58ed06e13
MD5 3d94e1abfa415546c467b2ea503beab4
BLAKE2b-256 0e33ab1cc03faae9ab3619643a86bbe4f0f234bd25b05fcbf0cb9d2e2b14b37b

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 74e76977b5833f55e8df6e56bd307e4b27036eed4c935cc16597d26345970f6d
MD5 aef09dabe62e126e1ecb6b85784e2bf1
BLAKE2b-256 38a6b9ae53f7862cf6f12b3cfce43cb3779ed86eb508bc3289ab323d668da607

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a1f5426ab55ac8af05c1ae3ec9d7f3987c1b1359c40aa39258dbb98366d15a6b
MD5 76756ee671933826773b2608f026d204
BLAKE2b-256 cdb7bdea4d51c0d638c30b6ec99c47eef155dead6ee0b4606d370370de37e159

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gamsapi-48.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for gamsapi-48.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dc2f465c768433eaea7562cf6f721988ecd7abd7ce7b7854221d3aef41ec7fa4
MD5 f1ab4a11b3269416375d9d48d278a11a
BLAKE2b-256 10251fe9f330cb1066f92048a2b46ce01bb446507e88c18cddd02b41059aa0b6

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp39-cp39-manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp39-cp39-manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 76c1bf3be05bc8e18c4613730c142bfdeed8e9c46f5fb6681e1d9b26ee6a915b
MD5 1823e1aa3b7c2b9e8b2e538f4fb3eba7
BLAKE2b-256 6cdae441bfad6ad6d2e08fd71cc3155ce91b08a9fddd630ac1fe349fe27d6911

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 8aa1bdfc1d7bbfccdf59d8f102f8fd94829e0a65d3e74ad2791b193d39e03833
MD5 fa526abcc84091240cb16b17c59faaf0
BLAKE2b-256 27dcd84c87ba6dd6795c14a28fda6e49a5fd151aa58c8ff75ba2ed247bf5653a

See more details on using hashes here.

File details

Details for the file gamsapi-48.2.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for gamsapi-48.2.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5f03a41568ebe94a71adaa63e8a37ac453229beae4a5147dee8c5846baad9cd5
MD5 dfacc70224ea2e64a57249e18d733646
BLAKE2b-256 36772b6f5b0252d2417031a099b0100726490341753d8805b596b2f30720dc0e

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page