Skip to main content

GAPandas4 is a Python package for accessing the Google Analytics Data API for GA4 using Pandas

Project description

GAPandas4

GAPandas4 is a Python package for querying the Google Analytics Data API for GA4 and displaying the results in a Pandas dataframe. It is the successor to the GAPandas package, which did the same thing for GA3 or Universal Analytics. GAPandas4 is a wrapper around the official Google Analytics Data API package and simplifies imports and queries, requiring far less code.

Before you start

In order to use GAPandas4 you will first need to create a Google Service Account with access to the Google Analytics Data API and export a client secrets JSON keyfile to use for authentication. You'll also need to add the service account email address as a user on the Google Analytics 4 property you wish to access, and you'll need to note the property ID to use in your queries.

Installation

As this is currently in alpha, there's currently no Pip package, however, you can install the code into your Python environment directly from GitHub using the command below. It will run fine in a Jupyter notebook, a Python IDE, or a Python script.

pip3 install git+https://github.com/practical-data-science/gapandas4.git

Usage

GAPandas4 has been written to allow you to use as little code as possible. Unlike the previous version of GAPandas for Universal Analytics, which used a payload based on a Python dictionary, GAPandas4 now uses a Protobuf (Protocol Buffer) payload as used in the API itself.

Report

The query() function is used to send a protobug API payload to the API. The function supports various report types via the report_type argument. Standard reports are handled using report_type="report", but this is also the default. Data are returned as a Pandas dataframe.

import gapandas4 as gp

service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'

report_request = gp.RunReportRequest(
    property=f"properties/{property_id}",
    dimensions=[
        gp.Dimension(name="country"),
        gp.Dimension(name="city")
    ],
    metrics=[
        gp.Metric(name="activeUsers")
    ],
    date_ranges=[gp.DateRange(start_date="2022-06-01", end_date="2022-06-01")],
)

df = gp.query(service_account, report_request, report_type="report")
print(df.head())

Batch report

If you construct a protobuf payload using BatchRunReportsRequest() you can pass up to five requests at once. These are returned as a list of Pandas dataframes, so will need to access them using their index.

import gapandas4 as gp

service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'


batch_report_request = gp.BatchRunReportsRequest(
    property=f"properties/{property_id}",
    requests=[
        gp.RunReportRequest(
            dimensions=[
                gp.Dimension(name="country"),
                gp.Dimension(name="city")
            ],
            metrics=[
                gp.Metric(name="activeUsers")
            ],
            date_ranges=[gp.DateRange(start_date="2022-06-01", end_date="2022-06-01")]
        ),
        gp.RunReportRequest(
            dimensions=[
                gp.Dimension(name="country"),
                gp.Dimension(name="city")
            ],
            metrics=[
                gp.Metric(name="activeUsers")
            ],
            date_ranges=[gp.DateRange(start_date="2022-06-02", end_date="2022-06-02")]
        )
    ]
)

df = gp.query(service_account, batch_report_request, report_type="batch_report")
print(df[0].head())
print(df[1].head())

Pivot report

Constructing a report using RunPivotReportRequest() will return pivoted data in a single Pandas dataframe.

import gapandas4 as gp

service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'

pivot_request = gp.RunPivotReportRequest(
    property=f"properties/{property_id}",
    dimensions=[gp.Dimension(name="country"),
                gp.Dimension(name="browser")],
    metrics=[gp.Metric(name="sessions")],
    date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
    pivots=[
        gp.Pivot(
            field_names=["country"],
            limit=5,
            order_bys=[
                gp.OrderBy(
                    dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
                )
            ],
        ),
        gp.Pivot(
            field_names=["browser"],
            offset=0,
            limit=5,
            order_bys=[
                gp.OrderBy(
                    metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
                )
            ],
        ),
    ],
)

df = gp.query(service_account, pivot_request, report_type="pivot")
print(df.head())

Batch pivot report

Constructing a payload using BatchRunPivotReportsRequest() will allow you to run up to five pivot reports. These are returned as a list of Pandas dataframes.

import gapandas4 as gp

service_account = 'client_secrets.json'
property_id = 'xxxxxxxxx'

batch_pivot_request = gp.BatchRunPivotReportsRequest(
    property=f"properties/{property_id}",
    requests=[
        gp.RunPivotReportRequest(
            dimensions=[gp.Dimension(name="country"),
                        gp.Dimension(name="browser")],
                metrics=[gp.Metric(name="sessions")],
                date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
                pivots=[
                    gp.Pivot(
                        field_names=["country"],
                        limit=5,
                        order_bys=[
                            gp.OrderBy(
                                dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
                            )
                        ],
                    ),
                    gp.Pivot(
                        field_names=["browser"],
                        offset=0,
                        limit=5,
                        order_bys=[
                            gp.OrderBy(
                                metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
                            )
                        ],
                    ),
                ],
        ),
        gp.RunPivotReportRequest(
            dimensions=[gp.Dimension(name="country"),
                        gp.Dimension(name="browser")],
                metrics=[gp.Metric(name="sessions")],
                date_ranges=[gp.DateRange(start_date="2022-05-30", end_date="today")],
                pivots=[
                    gp.Pivot(
                        field_names=["country"],
                        limit=5,
                        order_bys=[
                            gp.OrderBy(
                                dimension=gp.OrderBy.DimensionOrderBy(dimension_name="country")
                            )
                        ],
                    ),
                    gp.Pivot(
                        field_names=["browser"],
                        offset=0,
                        limit=5,
                        order_bys=[
                            gp.OrderBy(
                                metric=gp.OrderBy.MetricOrderBy(metric_name="sessions"), desc=True
                            )
                        ],
                    ),
                ],
        )
    ]
)

df = gp.query(service_account, batch_pivot_request, report_type="batch_pivot")
print(df[0].head())
print(df[1].head())

Metadata

The get_metadata() function will return all metadata on dimensions and metrics within the Google Analytics 4 property.

metadata = gp.get_metadata(service_account, property_id)
print(metadata)

Current features

  • Support for all current API functionality including RunReportRequest, BatchRunReportsRequest, RunPivotReportRequest, BatchRunPivotReportsRequest, RunRealtimeReportRequest, and GetMetadataRequest.
  • Returns data in a Pandas dataframe, or a list of Pandas dataframes.

Project details


Release history Release notifications | RSS feed

This version

0.3

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gapandas4-0.3.tar.gz (6.8 kB view details)

Uploaded Source

Built Distribution

gapandas4-0.3-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file gapandas4-0.3.tar.gz.

File metadata

  • Download URL: gapandas4-0.3.tar.gz
  • Upload date:
  • Size: 6.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.26.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for gapandas4-0.3.tar.gz
Algorithm Hash digest
SHA256 3916dd8671f79f50b1a4b30ae7d1a61af9eb4cc2f793fd9ee8b26dd02276c0f6
MD5 bbed7c9337dec16ea545bda7cbdb63a2
BLAKE2b-256 e55c8e6596e1dfed075420f1f3330f82b89d396b90333e1ccca4d2837c30897c

See more details on using hashes here.

File details

Details for the file gapandas4-0.3-py3-none-any.whl.

File metadata

  • Download URL: gapandas4-0.3-py3-none-any.whl
  • Upload date:
  • Size: 6.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.26.0 setuptools/45.2.0 requests-toolbelt/0.8.0 tqdm/4.62.1 CPython/3.8.10

File hashes

Hashes for gapandas4-0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 d5e3be7c1756c47b5d13c931be1411ff9fb8b6fc0ea5c174d89baafee4676572
MD5 7ccf23df15d22aef836b917878f9c6ab
BLAKE2b-256 0b05091f78b3a16bdac6dd10c87705aed768a658a3ef14b2fafaedb0218902cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page