Skip to main content

Cerberus and validator-collection based custom validator package (garlic_validator) for python projects.

Project description

Python Validator (garlic_validator)

Cerberus and validator-collection based custom validator package (garlic_validator) for python projects.

Features


Installation

1. Prerequisites

  • Python (>= v3.7)
  • PyPi (>= v21)

2. Install garlic-validator

A. [RECOMMENDED] PyPi install

# Install or upgrade garlic-validator package:
pip install --upgrade garlic-validator

# To uninstall package:
pip uninstall -y garlic-validator

B. Manually add to PYTHONPATH (Recommended for development)

# Clone repository by git:
git clone https://github.com/bybatkhuu/python_validator.git garlic_validator
cd garlic_validator

# Install python dependencies:
pip install --upgrade pip
cat requirements.txt | xargs -n 1 -L 1 pip install --no-cache-dir

# Add current path to PYTHONPATH:
export PYTHONPATH="${PWD}:${PYTHONPATH}"

C. Manually compile and setup (Not recommended)

# Clone repository by git:
git clone https://github.com/bybatkhuu/python_validator.git garlic_validator
cd garlic_validator

# Building python package:
pip install --upgrade pip setuptools wheel
python setup.py build
# Install python dependencies with built package to current python environment:
python setup.py install --record installed_files.txt

# To remove only installed garlic-validator package:
head -n 1 installed_files.txt | xargs rm -vrf
# Or to remove all installed files and packages:
cat installed_files.txt | xargs rm -vrf

Usage/Examples

garlic-validator and validator-collection:

import numpy as np
from garlic_validator import validators, checkers, errors

try:
    email_address = validators.email('test@domain.dev')
    # The value of email_address will now be "test@domain.dev"

    email_address = validators.email('this-is-an-invalid-email')
    # Will raise a ValueError

    email_address = validators.email(None)
    # Will raise an EmptyValueError
except errors.EmptyValueError:
    # Handling logic goes here
    print('Email address is empty')
except errors.InvalidEmailError:
    # More handlign logic goes here
    print('Invalid email address')

email_address = validators.email(None, allow_empty=True)
print(email_address)
# The value of email_address will now be None

email_address = validators.email('', allow_empty=True)
print(email_address)
# The value of email_address will now be None

is_email_address = checkers.is_email('test@domain.dev')
print(is_email_address)
# The value of is_email_address will now be True

is_email_address = checkers.is_email('this-is-an-invalid-email')
print(is_email_address)
# The value of is_email_address will now be False

is_email_address = checkers.is_email(None)
print(is_email_address)
# The value of is_email_address will now be False


## Custom validators:
## is_empty(val, trim_str=False)
is_empty = checkers.is_empty(None)
# True

is_empty = checkers.is_empty('')
# True

is_empty = checkers.is_empty('    ')
# False

is_empty = checkers.is_empty('    ', trim_str=True)
# True

is_empty = checkers.is_empty([])
# True

is_empty = checkers.is_empty({})
# True

is_empty = checkers.is_empty(())
# True

is_empty = checkers.is_empty(set())
# True

is_empty = checkers.is_empty(range(0))
# True

is_empty = checkers.is_empty(np.array([]))
# True


## is_numpy(val)
is_numpy = checkers.is_numpy(np.array([]))
# True

is_numpy = checkers.is_numpy(np.array([1, 2, 3]))
# True

is_numpy = checkers.is_numpy(None)
# False


## is_float(val)
is_float = checkers.is_float(1)
# True

is_float = checkers.is_float(-1.1123)
# True

is_float = checkers.is_float(1e+123)
# True

is_float = checkers.is_float('0123.000')
# True

is_float = checkers.is_float('1e+12')
# True

is_float = checkers.is_float('2002_12')
# False


## is_truthy(val)
is_truthy = checkers.is_truthy(True)
# True

is_truthy = checkers.is_truthy(1)
# True

is_truthy = checkers.is_truthy('1')
# True

is_truthy = checkers.is_truthy('1.0')
# True

is_truthy = checkers.is_truthy('TRUE')
# True

is_truthy = checkers.is_truthy('True')
# True

is_truthy = checkers.is_truthy('true')
# True

is_truthy = checkers.is_truthy('YES')
# True

is_truthy = checkers.is_truthy('Yes')
# True

is_truthy = checkers.is_truthy('yes')
# True

is_truthy = checkers.is_truthy('Y')
# True

is_truthy = checkers.is_truthy('y')
# True

is_truthy = checkers.is_truthy(1.1)
# False

is_truthy = checkers.is_truthy([1])
# False

is_truthy = checkers.is_truthy(False)
# False


## is_falsy(val)
is_falsy = checkers.is_falsy(False)
# True

is_falsy = checkers.is_falsy(0)
# True

is_falsy = checkers.is_falsy('0')
# True

is_falsy = checkers.is_falsy('0.0')
# True

is_falsy = checkers.is_falsy('FALSE')
# True

is_falsy = checkers.is_falsy('False')
# True

is_falsy = checkers.is_falsy('false')
# True

is_falsy = checkers.is_falsy('NO')
# True

is_falsy = checkers.is_falsy('No')
# True

is_falsy = checkers.is_falsy('no')
# True

is_falsy = checkers.is_falsy('N')
# True

is_falsy = checkers.is_falsy('n')
# True

is_falsy = checkers.is_falsy(2)
# False

is_falsy = checkers.is_falsy('a')
# False

is_falsy = checkers.is_falsy(True)
# False


## is_bool(val, coerce_value=False)
is_bool = checkers.is_bool(True)
# True

is_bool = checkers.is_bool(False)
# True

is_bool = checkers.is_bool(1)
# False

is_bool = checkers.is_bool('1', coerce_value=True)
# True

is_bool = checkers.is_bool('NO', coerce_value=True)
# True

Cerberus:

from cerberus import Validator

v = Validator({ 'name': { 'type': 'string' } })
print(v.validate({ 'name': 'john doe' }))
# True

v.schema = {'amount': {'type': 'integer'}}
print(v.validate({'amount': '1'}))
# False
print(v.errors)
# {'amount': ['must be of integer type']}

v.schema = {'amount': {'type': 'integer', 'coerce': int}}
print(v.validate({'amount': '1'}))
# True
print(v.document)
# {'amount': 1}

to_bool = lambda v: v.lower() in ('true', '1')
v.schema = {'flag': {'type': 'boolean', 'coerce': (str, to_bool)}}
print(v.validate({'flag': 'true'}))
# True
print(v.document)
# {'flag': True}

pydantic:

from pydantic import validate_arguments, ValidationError

@validate_arguments
def repeat(s: str, count: int, *, separator: bytes = b'') -> bytes:
    b = s.encode()
    return separator.join(b for _ in range(count))


a = repeat('hello', 3)
print(a)
#> b'hellohellohello'

b = repeat('x', '4', separator=' ')
print(b)
#> b'x x x x'

try:
    c = repeat('hello', 'wrong')
except ValidationError as exc:
    print(exc)
    """
    1 validation error for Repeat
    count
      value is not a valid integer (type=type_error.integer)
    """

Running Tests

To run tests, run the following command:

pytest

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

garlic_validator-1.0.0.tar.gz (6.2 kB view details)

Uploaded Source

Built Distribution

garlic_validator-1.0.0-py3-none-any.whl (6.3 kB view details)

Uploaded Python 3

File details

Details for the file garlic_validator-1.0.0.tar.gz.

File metadata

  • Download URL: garlic_validator-1.0.0.tar.gz
  • Upload date:
  • Size: 6.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for garlic_validator-1.0.0.tar.gz
Algorithm Hash digest
SHA256 8924050afa1ae72614430dc120c149acbab02e4ee99851f02b8648cf5e6f61a8
MD5 3ec6caadc89eeb3c0a1c6742d185585d
BLAKE2b-256 e9bbcbe02d0c2028288bf1d237e123b37fcc2560a34960f417b475ebf110c94e

See more details on using hashes here.

File details

Details for the file garlic_validator-1.0.0-py3-none-any.whl.

File metadata

File hashes

Hashes for garlic_validator-1.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cb5338031675481c6154b603ddd0db211bcdae571ad9febd5905e453d08c27e3
MD5 f293796ddd006df672ef1ed544719931
BLAKE2b-256 32efd5eccd3abe6880cabecbc4429f02976f5057b6efd81ad74be66daa34158f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page