Skip to main content

Samples, parsers, and writers for formats used in the Glotzer Group.

Project description

garnett

CircleCI RTD Contributors License

About

This is a collection of samples, parsers and writers for formats used in the Glotzer Group at the University of Michigan, Ann Arbor.

Maintainers

Setup

To install this package with pip, execute:

pip install garnett --user

Documentation

The package's documentation is available at: https://garnett.readthedocs.io/

To build the documentation yourself using sphinx, execute within the repository:

cd doc
make html
open _build/html/index.html

Quickstart

Reading and writing

import garnett

# Autodetects file format for a uniform trajectory API
with garnett.read('gsdfile.gsd') as traj:
    for frame in traj:
        pos = frame.position

# Simple conversion of trajectory formats
with garnett.read('posfile.pos') as traj:
    garnett.write(traj, 'gsdfile.gsd')

Data access

Access individual frames by indexing or create subsets of trajectories with slicing:

first_frame = traj[0]
last_frame = traj[-1]
nth_frame = traj[n]
# and so on

sub_trajectory = traj[i:j]

Access properties of trajectories:

traj.load_arrays()
traj.box             # M
traj.N               # M
traj.types           # MxT
traj.type_shapes     # MxT
traj.typeid          # MxN
traj.position        # MxNx3
traj.orientation     # MxNx4
traj.velocity        # MxNx3
traj.mass            # MxN
traj.charge          # MxN
traj.diameter        # MxN
traj.moment_inertia  # MxNx3
traj.angmom          # MxNx4
traj.image           # MxNx3

# M is the number of frames
# T is the number of particle types in a frame
# N is the number of particles in a frame

Access properties of individual frames:

frame = traj[i]
frame.box              # garnett.trajectory.Box object
frame.N                # scalar, number of particles
frame.types            # T, string names for each type
frame.type_shapes      # T, list of shapes for each type
frame.typeid           # N, type indices of each particle
frame.position         # Nx3
frame.orientation      # Nx4
frame.velocity         # Nx3
frame.mass             # N
frame.charge           # N
frame.diameter         # N
frame.moment_inertia   # Nx3
frame.angmom           # Nx4
frame.image            # Nx3
frame.data             # Dictionary of lists for each attribute
frame.data_key         # List of strings

All matrices are NumPy arrays.

Example use with HOOMD-blue

See the examples directory for additional examples.

pos_reader = PosFileReader()
with open('cube.pos') as posfile:
    traj = pos_reader.read(posfile)

# Initialize from last frame
snapshot = traj[-1].to_hoomd_snapshot()
system = init.read_snapshot(snapshot)

# Restore last frame
snapshot = system.take_snapshot()
traj[-1].to_hoomd_snapshot(snapshot)

Testing

To run all garnett tests, ddt, HOOMD-blue (hoomd), and pycifrw must be installed in the testing environments.

Execute the tests with:

python -m unittest discover tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

garnett-0.7.1.tar.gz (126.3 kB view details)

Uploaded Source

Built Distribution

garnett-0.7.1-py3-none-any.whl (76.2 kB view details)

Uploaded Python 3

File details

Details for the file garnett-0.7.1.tar.gz.

File metadata

  • Download URL: garnett-0.7.1.tar.gz
  • Upload date:
  • Size: 126.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.8.0 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for garnett-0.7.1.tar.gz
Algorithm Hash digest
SHA256 1734a1ef477a2bae0422a6dbe9d76bd3c208d851825fe067d6a80f1339dea698
MD5 624a374a92c2a1e7279f552d268e22bf
BLAKE2b-256 e4d902e249c34f4575954a3a37ca13897c7b9fb076bbee618b73a50cfc93b37a

See more details on using hashes here.

File details

Details for the file garnett-0.7.1-py3-none-any.whl.

File metadata

  • Download URL: garnett-0.7.1-py3-none-any.whl
  • Upload date:
  • Size: 76.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.0.0 requests-toolbelt/0.8.0 tqdm/4.43.0 CPython/3.8.2

File hashes

Hashes for garnett-0.7.1-py3-none-any.whl
Algorithm Hash digest
SHA256 25444120fe6aa9effde9fb3133b0269494f0f79789175fa9f67e0ea5d3f5ce95
MD5 32e97fe8a399ce482042aa226cb6fe30
BLAKE2b-256 b1dbdbe598c79ca7f52b0698a17e871ca01c3aa873553f77ee867b734b03b1c7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page