Skip to main content

Samples, parsers, and writers for formats used in the Glotzer Group.

Project description

garnett

CircleCI RTD Contributors License

About

This is a collection of samples, parsers and writers for formats used in the Glotzer Group at the University of Michigan, Ann Arbor.

Maintainers

Setup

To install this package with pip, execute:

pip install garnett --user

Documentation

The package's documentation is available at: https://garnett.readthedocs.io/

To build the documentation yourself using sphinx, execute within the repository:

cd doc
make html
open _build/html/index.html

Quickstart

Reading and writing

import garnett

# Autodetects file format for a uniform trajectory API
with garnett.read('gsdfile.gsd') as traj:
    for frame in traj:
        pos = frame.position

# Simple conversion of trajectory formats
with garnett.read('posfile.pos') as traj:
    garnett.write(traj, 'gsdfile.gsd')

Data access

Access individual frames by indexing or create subsets of trajectories with slicing:

first_frame = traj[0]
last_frame = traj[-1]
nth_frame = traj[n]
# and so on

sub_trajectory = traj[i:j]

Access properties of trajectories:

traj.load_arrays()
traj.box             # M
traj.N               # M
traj.types           # MxT
traj.type_shapes     # MxT
traj.typeid          # MxN
traj.position        # MxNx3
traj.orientation     # MxNx4
traj.velocity        # MxNx3
traj.mass            # MxN
traj.charge          # MxN
traj.diameter        # MxN
traj.moment_inertia  # MxNx3
traj.angmom          # MxNx4
traj.image           # MxNx3

# M is the number of frames
# T is the number of particle types in a frame
# N is the number of particles in a frame

Access properties of individual frames:

frame = traj[i]
frame.box              # garnett.trajectory.Box object
frame.N                # scalar, number of particles
frame.types            # T, string names for each type
frame.type_shapes      # T, list of shapes for each type
frame.typeid           # N, type indices of each particle
frame.position         # Nx3
frame.orientation      # Nx4
frame.velocity         # Nx3
frame.mass             # N
frame.charge           # N
frame.diameter         # N
frame.moment_inertia   # Nx3
frame.angmom           # Nx4
frame.image            # Nx3
frame.data             # Dictionary of lists for each attribute
frame.data_key         # List of strings

All matrices are NumPy arrays.

Example use with HOOMD-blue

See the examples directory for additional examples.

pos_reader = PosFileReader()
with open('cube.pos') as posfile:
    traj = pos_reader.read(posfile)

# Initialize from last frame
snapshot = traj[-1].to_hoomd_snapshot()
system = init.read_snapshot(snapshot)

# Restore last frame
snapshot = system.take_snapshot()
traj[-1].to_hoomd_snapshot(snapshot)

Testing

To run all garnett tests, ddt, HOOMD-blue (hoomd), and pycifrw must be installed in the testing environments.

Execute the tests with:

python -m unittest discover tests

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

garnett-0.7.1.tar.gz (126.3 kB view hashes)

Uploaded source

Built Distribution

garnett-0.7.1-py3-none-any.whl (76.2 kB view hashes)

Uploaded py3

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page