Skip to main content

Garmin SSO auth + Connect client

Project description

Garth

CI codecov

Garmin SSO auth + Connect client

Google Colabs

Graph 28-day rolling average of daily stress

Background

Garth is meant for personal use and follows the philosiphy that your data is your data. You should be able to download it and analyze it in the way that you'd like. In my case, that means processing with Google Colab, Pandas, Matplotlib, etc.

There are already a few Garmin Connect libraries. Why write another?

Authentication

The most important reasoning is to build a library with authentication that works on Google Colab and doesn't require tools like Cloudscraper. Garth, in comparison:

  1. Uses the same embedded SSO as the mobile app
  2. Only requires requests and pydantic as dependencies
  3. Supports MFA
  4. Supports saving and resuming sessions to avoid the need to log in each time you run a script, which is particularly useful if you have MFA enabled
  5. Works on Google Colab
  6. Uses Pydantic dataclasses to validate and simplify use of data

Python 3.10+

Google Colab, currently, uses 3.10. We should take advantage of all the goodies that come along with it. If you need to use an earlier version of Python, there are other libraries that will meet your needs. There's no intetion to backport.

JSON vs HTML

Using garth.connectapi() allows you to make requests routed to the Connect API and receive JSON vs needing to parse HTML. You can use the same endpoints the mobile app uses.

This also goes back to authentication. Garth manages the necessary Bearer Authentication (along with auto-refresh) necessary to make requests routed to the Connect API.

Instructions

Install

python -m pip install garth

Authenticate and save session

import garth
from getpass import getpass

email = input("Enter email address: ")
password = getpass("Enter password: ")
# If there's MFA, you'll be prompted during the login
garth.login(email, password)

garth.save("~/.garth")

Configure

Set domain for China

garth.configure(domain="garmin.cn")

Proxy through Charles

garth.configure(proxies={"https": "http://localhost:8888"}, ssl_verify=False)

Attempt to resume session

import garth
from garth import GarthException
from requests import HTTPError

garth.resume("~/.garth")
try:
    garth.client.auth_token.refresh()
except (GarthException, HTTPError):
    # Session is expired. You'll need to log in again

Connect API

Wellness

sleep = garth.connectapi(
    f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
    params={"date": "2023-07-05", "nonSleepBufferMinutes": 60),
)
list(sleep.keys())
[
    "dailySleepDTO",
    "sleepMovement",
    "remSleepData",
    "sleepLevels",
    "sleepRestlessMoments",
    "restlessMomentsCount",
    "wellnessSpO2SleepSummaryDTO",
    "wellnessEpochSPO2DataDTOList",
    "wellnessEpochRespirationDataDTOList",
    "sleepStress"
]

Usersummary

stress =  garth.connectapi(f"/usersummary-service/stats/stress/weekly/2023-07-05/52")
{
    "calendarDate": "2023-07-13",
    "values": {
        "highStressDuration": 2880,
        "lowStressDuration": 10140,
        "overallStressLevel": 33,
        "restStressDuration": 30960,
        "mediumStressDuration": 8760
    }
}

Resources

Stress

Daily stress levels

DailyStress.list("2023-07-23", 2)
[
    DailyStress(
        calendar_date=datetime.date(2023, 7, 22),
        overall_stress_level=31,
        rest_stress_duration=31980,
        low_stress_duration=23820,
        medium_stress_duration=7440,
        high_stress_duration=1500
    ),
    DailyStress(
        calendar_date=datetime.date(2023, 7, 23),
        overall_stress_level=26,
        rest_stress_duration=38220,
        low_stress_duration=22500,
        medium_stress_duration=2520,
        high_stress_duration=300
    )
]

Weekly stress levels

WeeklyStress.list("2023-07-23", 2)
[
    WeeklyStress(calendar_date=datetime.date(2023, 7, 10), value=33),
    WeeklyStress(calendar_date=datetime.date(2023, 7, 17), value=32)
]

Sleep

Daily sleep quality

garth.DailySleep.list("2023-07-23", 2)
[
    DailySleep(calendar_date=datetime.date(2023, 7, 22), value=69),
    DailySleep(calendar_date=datetime.date(2023, 7, 23), value=73)
]

Detailed sleep data

garth.SleepData.get("2023-07-20")
SleepData(
    daily_sleep_dto=DailySleepDTO(
        id=1689830700000,
        user_profile_pk=2591602,
        calendar_date=datetime.date(2023, 7, 20),
        sleep_time_seconds=23700,
        nap_time_seconds=0,
        sleep_window_confirmed=True,
        sleep_window_confirmation_type='enhanced_confirmed_final',
        sleep_start_timestamp_gmt=datetime.datetime(2023, 7, 20, 5, 25, tzinfo=TzInfo(UTC)),
        sleep_end_timestamp_gmt=datetime.datetime(2023, 7, 20, 12, 11, tzinfo=TzInfo(UTC)),
        sleep_start_timestamp_local=datetime.datetime(2023, 7, 19, 23, 25, tzinfo=TzInfo(UTC)),
        sleep_end_timestamp_local=datetime.datetime(2023, 7, 20, 6, 11, tzinfo=TzInfo(UTC)),
        unmeasurable_sleep_seconds=0,
        deep_sleep_seconds=9660,
        light_sleep_seconds=12600,
        rem_sleep_seconds=1440,
        awake_sleep_seconds=660,
        device_rem_capable=True,
        retro=False,
        sleep_from_device=True,
        sleep_version=2,
        awake_count=1,
        sleep_scores=SleepScores(
            total_duration=Score(
                qualifier_key='FAIR',
                optimal_start=28800.0,
                optimal_end=28800.0,
                value=None,
                ideal_start_in_seconds=None,
                deal_end_in_seconds=None
            ),
            stress=Score(
                qualifier_key='FAIR',
                optimal_start=0.0,
                optimal_end=15.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            awake_count=Score(
                qualifier_key='GOOD',
                optimal_start=0.0,
                optimal_end=1.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            overall=Score(
                qualifier_key='FAIR',
                optimal_start=None,
                optimal_end=None,
                value=68,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            rem_percentage=Score(
                qualifier_key='POOR',
                optimal_start=21.0,
                optimal_end=31.0,
                value=6,
                ideal_start_in_seconds=4977.0,
                ideal_end_in_seconds=7347.0
            ),
            restlessness=Score(
                qualifier_key='EXCELLENT',
                optimal_start=0.0,
                optimal_end=5.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            light_percentage=Score(
                qualifier_key='EXCELLENT',
                optimal_start=30.0,
                optimal_end=64.0,
                value=53,
                ideal_start_in_seconds=7110.0,
                ideal_end_in_seconds=15168.0
            ),
            deep_percentage=Score(
                qualifier_key='EXCELLENT',
                optimal_start=16.0,
                optimal_end=33.0,
                value=41,
                ideal_start_in_seconds=3792.0,
                ideal_end_in_seconds=7821.0
            )
        ),
        auto_sleep_start_timestamp_gmt=None,
        auto_sleep_end_timestamp_gmt=None,
        sleep_quality_type_pk=None,
        sleep_result_type_pk=None,
        average_sp_o2_value=92.0,
        lowest_sp_o2_value=87,
        highest_sp_o2_value=100,
        average_sp_o2_hr_sleep=53.0,
        average_respiration_value=14.0,
        lowest_respiration_value=12.0,
        highest_respiration_value=16.0,
        avg_sleep_stress=17.0,
        age_group='ADULT',
        sleep_score_feedback='NEGATIVE_NOT_ENOUGH_REM',
        sleep_score_insight='NONE'
    ),
    sleep_movement=[
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 4, 25),
            end_gmt=datetime.datetime(2023, 7, 20, 4, 26),
            activity_level=5.688743692980419
        ),
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 4, 26),
            end_gmt=datetime.datetime(2023, 7, 20, 4, 27),
            activity_level=5.318763075304898
        ),
        ...,
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 13, 10),
            end_gmt=datetime.datetime(2023, 7, 20, 13, 11),
            activity_level=7.088729101943337
        )
    ]
)

leep data over several nights

garth.SleepData.get(end="2023-07-20", days=30)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

garth-0.3.0.tar.gz (102.7 kB view details)

Uploaded Source

Built Distribution

garth-0.3.0-py3-none-any.whl (12.1 kB view details)

Uploaded Python 3

File details

Details for the file garth-0.3.0.tar.gz.

File metadata

  • Download URL: garth-0.3.0.tar.gz
  • Upload date:
  • Size: 102.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for garth-0.3.0.tar.gz
Algorithm Hash digest
SHA256 296010366fbdd59c173f4079fd42716c850cd742c28c17a55277a7cc580adb15
MD5 a7597db3fecbb1a76ba4d9206bcc1244
BLAKE2b-256 ec14fd331b641777277500ab30c9818891291af05f21517ab8cf82946d3d7852

See more details on using hashes here.

File details

Details for the file garth-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: garth-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 12.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for garth-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 12189e7b124c1e962a68637b5b7dab6cb0fcd742e1e7864b212d6398970707c0
MD5 a11f94a36de919e82155fe6eb63e4927
BLAKE2b-256 229ef6f3ab91bbd9da44bf070c1d71fa18638f50f2c6d9e3f3f175f4fce8e820

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page