Skip to main content

Garmin SSO auth + Connect client

Project description

Garth

CI codecov

Garmin SSO auth + Connect client

Google Colabs

Stress: 28-day rolling average

Stress levels from one day to another can vary by extremes, but there's always a general trend. Using a scatter plot with a rolling average shows both the individual days and the trend. The Colab retrieves up to three years of daily data. If there's less than three years of data, it retrieves whatever is available.

Stress: Garph of 28-day rolling average

Sleep stages over 90 days

The Garmin Connect app only shows a maximum of seven days for sleep stages—making it hard to see trends. The Connect API supports retrieving daily sleep quality in 28-day pages, but that doesn't show details. Using SleedData.list() gives us the ability to retrieve an arbitrary number of day with enough detail to product a stacked bar graph of the daily sleep stages.

Sleep stages over 90 days

Background

Garth is meant for personal use and follows the philosiphy that your data is your data. You should be able to download it and analyze it in the way that you'd like. In my case, that means processing with Google Colab, Pandas, Matplotlib, etc.

There are already a few Garmin Connect libraries. Why write another?

Authentication

The most important reasoning is to build a library with authentication that works on Google Colab and doesn't require tools like Cloudscraper. Garth, in comparison:

  1. Uses the same embedded SSO as the mobile app
  2. Only requires requests and pydantic as dependencies
  3. Supports MFA
  4. Supports saving and resuming sessions to avoid the need to log in each time you run a script, which is particularly useful if you have MFA enabled
  5. Works on Google Colab
  6. Uses Pydantic dataclasses to validate and simplify use of data

Python 3.10+

Google Colab, currently, uses 3.10. We should take advantage of all the goodies that come along with it. If you need to use an earlier version of Python, there are other libraries that will meet your needs. There's no intetion to backport.

JSON vs HTML

Using garth.connectapi() allows you to make requests routed to the Connect API and receive JSON vs needing to parse HTML. You can use the same endpoints the mobile app uses.

This also goes back to authentication. Garth manages the necessary Bearer Authentication (along with auto-refresh) necessary to make requests routed to the Connect API.

Instructions

Install

python -m pip install garth

Authenticate and save session

import garth
from getpass import getpass

email = input("Enter email address: ")
password = getpass("Enter password: ")
# If there's MFA, you'll be prompted during the login
garth.login(email, password)

garth.save("~/.garth")

Configure

Set domain for China

garth.configure(domain="garmin.cn")

Proxy through Charles

garth.configure(proxies={"https": "http://localhost:8888"}, ssl_verify=False)

Attempt to resume session

import garth
from garth import GarthException
from requests import HTTPError

garth.resume("~/.garth")
try:
    garth.client.auth_token.refresh()
except (GarthException, HTTPError):
    # Session is expired. You'll need to log in again

Connect API

Daily details

sleep = garth.connectapi(
    f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
    params={"date": "2023-07-05", "nonSleepBufferMinutes": 60),
)
list(sleep.keys())
[
    "dailySleepDTO",
    "sleepMovement",
    "remSleepData",
    "sleepLevels",
    "sleepRestlessMoments",
    "restlessMomentsCount",
    "wellnessSpO2SleepSummaryDTO",
    "wellnessEpochSPO2DataDTOList",
    "wellnessEpochRespirationDataDTOList",
    "sleepStress"
]

Stats

stress =  garth.connectapi(f"/usersummary-service/stats/stress/weekly/2023-07-05/52")
{
    "calendarDate": "2023-07-13",
    "values": {
        "highStressDuration": 2880,
        "lowStressDuration": 10140,
        "overallStressLevel": 33,
        "restStressDuration": 30960,
        "mediumStressDuration": 8760
    }
}

Resources

Stress

Daily stress levels

DailyStress.list("2023-07-23", 2)
[
    DailyStress(
        calendar_date=datetime.date(2023, 7, 22),
        overall_stress_level=31,
        rest_stress_duration=31980,
        low_stress_duration=23820,
        medium_stress_duration=7440,
        high_stress_duration=1500
    ),
    DailyStress(
        calendar_date=datetime.date(2023, 7, 23),
        overall_stress_level=26,
        rest_stress_duration=38220,
        low_stress_duration=22500,
        medium_stress_duration=2520,
        high_stress_duration=300
    )
]

Weekly stress levels

WeeklyStress.list("2023-07-23", 2)
[
    WeeklyStress(calendar_date=datetime.date(2023, 7, 10), value=33),
    WeeklyStress(calendar_date=datetime.date(2023, 7, 17), value=32)
]

Steps

Daily steps

garth.DailySteps.list(period=2)
[
    DailySteps(
        calendar_date=datetime.date(2023, 7, 28),
        total_steps=6510,
        total_distance=5552,
        step_goal=8090
    ),
    DailySteps(
        calendar_date=datetime.date(2023, 7, 29),
        total_steps=7218,
        total_distance=6002,
        step_goal=7940
    )
]

Weekly steps

garth.WeeklySteps.list(period=2)
[
    WeeklySteps(
        calendar_date=datetime.date(2023, 7, 16),
        total_steps=42339,
        average_steps=6048.428571428572,
        average_distance=5039.285714285715,
        total_distance=35275.0,
        wellness_data_days_count=7
    ),
    WeeklySteps(
        calendar_date=datetime.date(2023, 7, 23),
        total_steps=56420,
        average_steps=8060.0,
        average_distance=7198.142857142857,
        total_distance=50387.0,
        wellness_data_days_count=7
    )
]

Intensity Minutes

Daily intensity minutes

garth.DailyIntensityMinutes.list(period=2)
[
    DailyIntensityMinutes(
        calendar_date=datetime.date(2023, 7, 28),
        weekly_goal=150,
        moderate_value=0,
        vigorous_value=0
    ),
    DailyIntensityMinutes(
        calendar_date=datetime.date(2023, 7, 29),
        weekly_goal=150,
        moderate_value=0,
        vigorous_value=0
    )
]

Weekly intensity minutes

garth.WeeklyIntensityMinutes.list(period=2)
[
    WeeklyIntensityMinutes(
        calendar_date=datetime.date(2023, 7, 17),
        weekly_goal=150,
        moderate_value=103,
        vigorous_value=9
    ),
    WeeklyIntensityMinutes(
        calendar_date=datetime.date(2023, 7, 24),
        weekly_goal=150,
        moderate_value=101,
        vigorous_value=105
    )
]

Sleep

Daily sleep quality

garth.DailySleep.list("2023-07-23", 2)
[
    DailySleep(calendar_date=datetime.date(2023, 7, 22), value=69),
    DailySleep(calendar_date=datetime.date(2023, 7, 23), value=73)
]

Detailed sleep data

garth.SleepData.get("2023-07-20")
SleepData(
    daily_sleep_dto=DailySleepDTO(
        id=1689830700000,
        user_profile_pk=2591602,
        calendar_date=datetime.date(2023, 7, 20),
        sleep_time_seconds=23700,
        nap_time_seconds=0,
        sleep_window_confirmed=True,
        sleep_window_confirmation_type='enhanced_confirmed_final',
        sleep_start_timestamp_gmt=datetime.datetime(2023, 7, 20, 5, 25, tzinfo=TzInfo(UTC)),
        sleep_end_timestamp_gmt=datetime.datetime(2023, 7, 20, 12, 11, tzinfo=TzInfo(UTC)),
        sleep_start_timestamp_local=datetime.datetime(2023, 7, 19, 23, 25, tzinfo=TzInfo(UTC)),
        sleep_end_timestamp_local=datetime.datetime(2023, 7, 20, 6, 11, tzinfo=TzInfo(UTC)),
        unmeasurable_sleep_seconds=0,
        deep_sleep_seconds=9660,
        light_sleep_seconds=12600,
        rem_sleep_seconds=1440,
        awake_sleep_seconds=660,
        device_rem_capable=True,
        retro=False,
        sleep_from_device=True,
        sleep_version=2,
        awake_count=1,
        sleep_scores=SleepScores(
            total_duration=Score(
                qualifier_key='FAIR',
                optimal_start=28800.0,
                optimal_end=28800.0,
                value=None,
                ideal_start_in_seconds=None,
                deal_end_in_seconds=None
            ),
            stress=Score(
                qualifier_key='FAIR',
                optimal_start=0.0,
                optimal_end=15.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            awake_count=Score(
                qualifier_key='GOOD',
                optimal_start=0.0,
                optimal_end=1.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            overall=Score(
                qualifier_key='FAIR',
                optimal_start=None,
                optimal_end=None,
                value=68,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            rem_percentage=Score(
                qualifier_key='POOR',
                optimal_start=21.0,
                optimal_end=31.0,
                value=6,
                ideal_start_in_seconds=4977.0,
                ideal_end_in_seconds=7347.0
            ),
            restlessness=Score(
                qualifier_key='EXCELLENT',
                optimal_start=0.0,
                optimal_end=5.0,
                value=None,
                ideal_start_in_seconds=None,
                ideal_end_in_seconds=None
            ),
            light_percentage=Score(
                qualifier_key='EXCELLENT',
                optimal_start=30.0,
                optimal_end=64.0,
                value=53,
                ideal_start_in_seconds=7110.0,
                ideal_end_in_seconds=15168.0
            ),
            deep_percentage=Score(
                qualifier_key='EXCELLENT',
                optimal_start=16.0,
                optimal_end=33.0,
                value=41,
                ideal_start_in_seconds=3792.0,
                ideal_end_in_seconds=7821.0
            )
        ),
        auto_sleep_start_timestamp_gmt=None,
        auto_sleep_end_timestamp_gmt=None,
        sleep_quality_type_pk=None,
        sleep_result_type_pk=None,
        average_sp_o2_value=92.0,
        lowest_sp_o2_value=87,
        highest_sp_o2_value=100,
        average_sp_o2_hr_sleep=53.0,
        average_respiration_value=14.0,
        lowest_respiration_value=12.0,
        highest_respiration_value=16.0,
        avg_sleep_stress=17.0,
        age_group='ADULT',
        sleep_score_feedback='NEGATIVE_NOT_ENOUGH_REM',
        sleep_score_insight='NONE'
    ),
    sleep_movement=[
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 4, 25),
            end_gmt=datetime.datetime(2023, 7, 20, 4, 26),
            activity_level=5.688743692980419
        ),
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 4, 26),
            end_gmt=datetime.datetime(2023, 7, 20, 4, 27),
            activity_level=5.318763075304898
        ),
        ...,
        SleepMovement(
            start_gmt=datetime.datetime(2023, 7, 20, 13, 10),
            end_gmt=datetime.datetime(2023, 7, 20, 13, 11),
            activity_level=7.088729101943337
        )
    ]
)

sleep data over several nights

garth.SleepData.get(end="2023-07-20", days=30)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

garth-0.3.2.tar.gz (108.1 kB view details)

Uploaded Source

Built Distribution

garth-0.3.2-py3-none-any.whl (13.9 kB view details)

Uploaded Python 3

File details

Details for the file garth-0.3.2.tar.gz.

File metadata

  • Download URL: garth-0.3.2.tar.gz
  • Upload date:
  • Size: 108.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for garth-0.3.2.tar.gz
Algorithm Hash digest
SHA256 fc91b3a2122d37d13221bfa23be236ed1dba5ec85d5d4d183d93258a1f938e16
MD5 f62276734b641d6b884a50b246a169f9
BLAKE2b-256 6764c60313bbdd833060c9f5173fc025253cdc170fe7c9991327c3ca5a08e79e

See more details on using hashes here.

File details

Details for the file garth-0.3.2-py3-none-any.whl.

File metadata

  • Download URL: garth-0.3.2-py3-none-any.whl
  • Upload date:
  • Size: 13.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.11

File hashes

Hashes for garth-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0065a7af8be44527d9a81d729e90c860be6065a74a6d2bf2594705c4e1e5423a
MD5 10bbdd8633a8207139acf26c3cdadde3
BLAKE2b-256 85b4192823ac056dc4787a2ea9de78d31d3d24cedabbfb482a2828a5c20b8395

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page