Garmin SSO auth + Connect client
Project description
Garth
Garmin SSO auth + Connect Python client
Google Colabs
Stress: 28-day rolling average
Stress levels from one day to another can vary by extremes, but there's always a general trend. Using a scatter plot with a rolling average shows both the individual days and the trend. The Colab retrieves up to three years of daily data. If there's less than three years of data, it retrieves whatever is available.
Sleep analysis over 90 days
The Garmin Connect app only shows a maximum of seven days for sleep
stages—making it hard to see trends. The Connect API supports retrieving
daily sleep quality in 28-day pages, but that doesn't show details. Using
SleedData.list()
gives us the ability to retrieve an arbitrary number of
day with enough detail to product a stacked bar graph of the daily sleep
stages.
One specific graph that's useful but not available in the Connect app is sleep start and end times over an extended period. This provides context to the sleep hours and stages.
ChatGPT analysis of Garmin stats
ChatGPT's Advanced Data Analysis took can provide incredible insight into the data in a way that's much simpler than using Pandas and Matplotlib.
Start by using the linked Colab to download a CSV of the last three years of your stats, and upload the CSV to ChatGPT.
Here's the outputs of the following prompts:
How do I sleep on different days of the week?
On what days do I exercise the most?
Magic!
Background
Garth is meant for personal use and follows the philosophy that your data is your data. You should be able to download it and analyze it in the way that you'd like. In my case, that means processing with Google Colab, Pandas, Matplotlib, etc.
There are already a few Garmin Connect libraries. Why write another?
Authentication and stability
The most important reasoning is to build a library with authentication that works on Google Colab and doesn't require tools like Cloudscraper. Garth, in comparison:
- Uses OAuth1 and OAuth2 token authentication after initial login
- OAuth1 token survives for a year
- Supports MFA
- Auto-refresh of OAuth2 token when expired
- Works on Google Colab
- Uses Pydantic dataclasses to validate and simplify use of data
- Full test coverage
JSON vs HTML
Using garth.connectapi()
allows you to make requests to the Connect API
and receive JSON vs needing to parse HTML. You can use the same endpoints the
mobile app uses.
This also goes back to authentication. Garth manages the necessary Bearer Authentication (along with auto-refresh) necessary to make requests routed to the Connect API.
Instructions
Install
python -m pip install garth
Clone, setup environment and run tests
gh repo clone matin/garth
cd garth
make install
make
Use make help
to see all the options.
Authenticate and save session
import garth
from getpass import getpass
email = input("Enter email address: ")
password = getpass("Enter password: ")
# If there's MFA, you'll be prompted during the login
garth.login(email, password)
garth.save("~/.garth")
Configure
Set domain for China
garth.configure(domain="garmin.cn")
Proxy through Charles
garth.configure(proxies={"https": "http://localhost:8888"}, ssl_verify=False)
Attempt to resume session
import garth
from garth import GarthException
garth.resume("~/.garth")
try:
garth.client.username
except GarthException:
# Session is expired. You'll need to log in again
Connect API
Daily details
sleep = garth.connectapi(
f"/wellness-service/wellness/dailySleepData/{garth.client.username}",
params={"date": "2023-07-05", "nonSleepBufferMinutes": 60},
)
list(sleep.keys())
[
"dailySleepDTO",
"sleepMovement",
"remSleepData",
"sleepLevels",
"sleepRestlessMoments",
"restlessMomentsCount",
"wellnessSpO2SleepSummaryDTO",
"wellnessEpochSPO2DataDTOList",
"wellnessEpochRespirationDataDTOList",
"sleepStress"
]
Stats
stress = garth.connectapi("/usersummary-service/stats/stress/weekly/2023-07-05/52")
{
"calendarDate": "2023-07-13",
"values": {
"highStressDuration": 2880,
"lowStressDuration": 10140,
"overallStressLevel": 33,
"restStressDuration": 30960,
"mediumStressDuration": 8760
}
}
Upload
with open("12129115726_ACTIVITY.fit", "rb") as f:
uploaded = garth.client.upload(f)
{
'detailedImportResult': {
'uploadId': 212157427938,
'uploadUuid': {
'uuid': '6e56051d-1dd4-4f2c-b8ba-00a1a7d82eb3'
},
'owner': 2591602,
'fileSize': 5289,
'processingTime': 36,
'creationDate': '2023-09-29 01:58:19.113 GMT',
'ipAddress': None,
'fileName': '12129115726_ACTIVITY.fit',
'report': None,
'successes': [],
'failures': []
}
}
Stats resources
Stress
Daily stress levels
DailyStress.list("2023-07-23", 2)
[
DailyStress(
calendar_date=datetime.date(2023, 7, 22),
overall_stress_level=31,
rest_stress_duration=31980,
low_stress_duration=23820,
medium_stress_duration=7440,
high_stress_duration=1500
),
DailyStress(
calendar_date=datetime.date(2023, 7, 23),
overall_stress_level=26,
rest_stress_duration=38220,
low_stress_duration=22500,
medium_stress_duration=2520,
high_stress_duration=300
)
]
Weekly stress levels
WeeklyStress.list("2023-07-23", 2)
[
WeeklyStress(calendar_date=datetime.date(2023, 7, 10), value=33),
WeeklyStress(calendar_date=datetime.date(2023, 7, 17), value=32)
]
Steps
Daily steps
garth.DailySteps.list(period=2)
[
DailySteps(
calendar_date=datetime.date(2023, 7, 28),
total_steps=6510,
total_distance=5552,
step_goal=8090
),
DailySteps(
calendar_date=datetime.date(2023, 7, 29),
total_steps=7218,
total_distance=6002,
step_goal=7940
)
]
Weekly steps
garth.WeeklySteps.list(period=2)
[
WeeklySteps(
calendar_date=datetime.date(2023, 7, 16),
total_steps=42339,
average_steps=6048.428571428572,
average_distance=5039.285714285715,
total_distance=35275.0,
wellness_data_days_count=7
),
WeeklySteps(
calendar_date=datetime.date(2023, 7, 23),
total_steps=56420,
average_steps=8060.0,
average_distance=7198.142857142857,
total_distance=50387.0,
wellness_data_days_count=7
)
]
Intensity Minutes
Daily intensity minutes
garth.DailyIntensityMinutes.list(period=2)
[
DailyIntensityMinutes(
calendar_date=datetime.date(2023, 7, 28),
weekly_goal=150,
moderate_value=0,
vigorous_value=0
),
DailyIntensityMinutes(
calendar_date=datetime.date(2023, 7, 29),
weekly_goal=150,
moderate_value=0,
vigorous_value=0
)
]
Weekly intensity minutes
garth.WeeklyIntensityMinutes.list(period=2)
[
WeeklyIntensityMinutes(
calendar_date=datetime.date(2023, 7, 17),
weekly_goal=150,
moderate_value=103,
vigorous_value=9
),
WeeklyIntensityMinutes(
calendar_date=datetime.date(2023, 7, 24),
weekly_goal=150,
moderate_value=101,
vigorous_value=105
)
]
HRV
Daily HRV
garth.DailyHRV.list(period=2)
[
DailyHRV(
calendar_date=datetime.date(2023, 7, 28),
weekly_avg=39,
last_night_avg=36,
last_night_5_min_high=52,
baseline=HRVBaseline(
low_upper=36,
balanced_low=39,
balanced_upper=51,
marker_value=0.25
),
status='BALANCED',
feedback_phrase='HRV_BALANCED_2',
create_time_stamp=datetime.datetime(2023, 7, 28, 12, 40, 16, 785000)
),
DailyHRV(
calendar_date=datetime.date(2023, 7, 29),
weekly_avg=40,
last_night_avg=41,
last_night_5_min_high=76,
baseline=HRVBaseline(
low_upper=36,
balanced_low=39,
balanced_upper=51,
marker_value=0.2916565
),
status='BALANCED',
feedback_phrase='HRV_BALANCED_8',
create_time_stamp=datetime.datetime(2023, 7, 29, 13, 45, 23, 479000)
)
]
Detailed HRV data
garth.HRVData.get("2023-07-20")
HRVData(
user_profile_pk=2591602,
hrv_summary=HRVSummary(
calendar_date=datetime.date(2023, 7, 20),
weekly_avg=39,
last_night_avg=42,
last_night_5_min_high=66,
baseline=Baseline(
low_upper=36,
balanced_low=39,
balanced_upper=52,
marker_value=0.25
),
status='BALANCED',
feedback_phrase='HRV_BALANCED_7',
create_time_stamp=datetime.datetime(2023, 7, 20, 12, 14, 11, 898000)
),
hrv_readings=[
HRVReading(
hrv_value=54,
reading_time_gmt=datetime.datetime(2023, 7, 20, 5, 29, 48),
reading_time_local=datetime.datetime(2023, 7, 19, 23, 29, 48)
),
HRVReading(
hrv_value=56,
reading_time_gmt=datetime.datetime(2023, 7, 20, 5, 34, 48),
reading_time_local=datetime.datetime(2023, 7, 19, 23, 34, 48)
),
# ... truncated for brevity
HRVReading(
hrv_value=38,
reading_time_gmt=datetime.datetime(2023, 7, 20, 12, 9, 48),
reading_time_local=datetime.datetime(2023, 7, 20, 6, 9, 48)
)
],
start_timestamp_gmt=datetime.datetime(2023, 7, 20, 5, 25),
end_timestamp_gmt=datetime.datetime(2023, 7, 20, 12, 9, 48),
start_timestamp_local=datetime.datetime(2023, 7, 19, 23, 25),
end_timestamp_local=datetime.datetime(2023, 7, 20, 6, 9, 48),
sleep_start_timestamp_gmt=datetime.datetime(2023, 7, 20, 5, 25),
sleep_end_timestamp_gmt=datetime.datetime(2023, 7, 20, 12, 11),
sleep_start_timestamp_local=datetime.datetime(2023, 7, 19, 23, 25),
sleep_end_timestamp_local=datetime.datetime(2023, 7, 20, 6, 11)
)
Sleep
Daily sleep quality
garth.DailySleep.list("2023-07-23", 2)
[
DailySleep(calendar_date=datetime.date(2023, 7, 22), value=69),
DailySleep(calendar_date=datetime.date(2023, 7, 23), value=73)
]
Detailed sleep data
garth.SleepData.get("2023-07-20")
SleepData(
daily_sleep_dto=DailySleepDTO(
id=1689830700000,
user_profile_pk=2591602,
calendar_date=datetime.date(2023, 7, 20),
sleep_time_seconds=23700,
nap_time_seconds=0,
sleep_window_confirmed=True,
sleep_window_confirmation_type='enhanced_confirmed_final',
sleep_start_timestamp_gmt=datetime.datetime(2023, 7, 20, 5, 25, tzinfo=TzInfo(UTC)),
sleep_end_timestamp_gmt=datetime.datetime(2023, 7, 20, 12, 11, tzinfo=TzInfo(UTC)),
sleep_start_timestamp_local=datetime.datetime(2023, 7, 19, 23, 25, tzinfo=TzInfo(UTC)),
sleep_end_timestamp_local=datetime.datetime(2023, 7, 20, 6, 11, tzinfo=TzInfo(UTC)),
unmeasurable_sleep_seconds=0,
deep_sleep_seconds=9660,
light_sleep_seconds=12600,
rem_sleep_seconds=1440,
awake_sleep_seconds=660,
device_rem_capable=True,
retro=False,
sleep_from_device=True,
sleep_version=2,
awake_count=1,
sleep_scores=SleepScores(
total_duration=Score(
qualifier_key='FAIR',
optimal_start=28800.0,
optimal_end=28800.0,
value=None,
ideal_start_in_seconds=None,
deal_end_in_seconds=None
),
stress=Score(
qualifier_key='FAIR',
optimal_start=0.0,
optimal_end=15.0,
value=None,
ideal_start_in_seconds=None,
ideal_end_in_seconds=None
),
awake_count=Score(
qualifier_key='GOOD',
optimal_start=0.0,
optimal_end=1.0,
value=None,
ideal_start_in_seconds=None,
ideal_end_in_seconds=None
),
overall=Score(
qualifier_key='FAIR',
optimal_start=None,
optimal_end=None,
value=68,
ideal_start_in_seconds=None,
ideal_end_in_seconds=None
),
rem_percentage=Score(
qualifier_key='POOR',
optimal_start=21.0,
optimal_end=31.0,
value=6,
ideal_start_in_seconds=4977.0,
ideal_end_in_seconds=7347.0
),
restlessness=Score(
qualifier_key='EXCELLENT',
optimal_start=0.0,
optimal_end=5.0,
value=None,
ideal_start_in_seconds=None,
ideal_end_in_seconds=None
),
light_percentage=Score(
qualifier_key='EXCELLENT',
optimal_start=30.0,
optimal_end=64.0,
value=53,
ideal_start_in_seconds=7110.0,
ideal_end_in_seconds=15168.0
),
deep_percentage=Score(
qualifier_key='EXCELLENT',
optimal_start=16.0,
optimal_end=33.0,
value=41,
ideal_start_in_seconds=3792.0,
ideal_end_in_seconds=7821.0
)
),
auto_sleep_start_timestamp_gmt=None,
auto_sleep_end_timestamp_gmt=None,
sleep_quality_type_pk=None,
sleep_result_type_pk=None,
average_sp_o2_value=92.0,
lowest_sp_o2_value=87,
highest_sp_o2_value=100,
average_sp_o2_hr_sleep=53.0,
average_respiration_value=14.0,
lowest_respiration_value=12.0,
highest_respiration_value=16.0,
avg_sleep_stress=17.0,
age_group='ADULT',
sleep_score_feedback='NEGATIVE_NOT_ENOUGH_REM',
sleep_score_insight='NONE'
),
sleep_movement=[
SleepMovement(
start_gmt=datetime.datetime(2023, 7, 20, 4, 25),
end_gmt=datetime.datetime(2023, 7, 20, 4, 26),
activity_level=5.688743692980419
),
SleepMovement(
start_gmt=datetime.datetime(2023, 7, 20, 4, 26),
end_gmt=datetime.datetime(2023, 7, 20, 4, 27),
activity_level=5.318763075304898
),
# ... truncated for brevity
SleepMovement(
start_gmt=datetime.datetime(2023, 7, 20, 13, 10),
end_gmt=datetime.datetime(2023, 7, 20, 13, 11),
activity_level=7.088729101943337
)
]
)
sleep data over several nights
garth.SleepData.list("2023-07-20", 30)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file garth-0.4.38.tar.gz
.
File metadata
- Download URL: garth-0.4.38.tar.gz
- Upload date:
- Size: 164.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 73ec125c00dc825ec3a49271194bacde8038bfe0e68c6c2329fa74b496dcc5bf |
|
MD5 | 07703103a8fe83806256263a119d75a0 |
|
BLAKE2b-256 | 3a170f763128979ba44b0b4d3505b3b86258bd12764a250a1f8b19fde6631b76 |
File details
Details for the file garth-0.4.38-py3-none-any.whl
.
File metadata
- Download URL: garth-0.4.38-py3-none-any.whl
- Upload date:
- Size: 19.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a637555ee39ae21569ec6db153d69592e55120f0240c6a93d815f899de00e36 |
|
MD5 | ef7f77a9d9ca21f7e7526e240a455713 |
|
BLAKE2b-256 | eb6c49921e53970c75200adc28c45a120a14374e8499f96376bab01fa68e2e3b |