Skip to main content

Gamma approximation of stratified truncated exact test

Project description

Gaste Package

Welcome to the Gaste package! This package provides a set of tools and utilities for analyzing stratified 2x2 contingency table. Gives the exact or approximate p-value of the overall association between features and outcomes under 2x2 stratified contingency table.

Installation

To install the Gaste package, simply run the following command:

pip install gaste-test

Basic import

Once installed, you can import the Gaste package or the main function in your Python code using the following line:

import gaste-test
from gaste-test import get_pval_comb, StratifiedTable2x2

Features

The Gaste package offers the following features:

  • Exact calcul of p-value combination of one tail Fisher's exact test
  • Approximation of the law of combination by Gamma approximation distribution
  • Incorporating truncation into the p-value combination enhances statistical power in scenarios featuring few effects or contradictory effects between strata
  • Visualization: Forest plot for data analysis.

Example of use

Example of Berkeley's admission in 1973 by departement and gender :

>>> admission = pd.read_csv("admission.csv")
Department Male-Admitted Female-Admitted Male-Rejected Female-Rejected
A 512 89 313 19
B 353 17 207 8
C 120 202 205 391
D 138 131 279 244
E 53 94 138 299
F 22 24 351 317
    # Data preparation
>>> nb_strata = admission.shape[0]
>>> rows = ("Admitted", "Rejected")
>>> columns = ("Men", "Women")
>>> contingency_table = np.array(
        admission.loc[:, admission.columns != "Department"]
    ).reshape((nb_strata, 2, 2))
>>> strat_label = ["Department " + dep for dep in admission["Department"]]
    # Create object
>>> stratified_table = StratifiedTable2x2(
        contingency_table, labels=strat_label, name_rows=rows, name_columns=columns
    )
>>> stratified_table.resume()
Studies Men Admitted Women Admitted Men Rejected Women Rejected $p_s^-$ $p_s^+$ OR log(OR) CI log(CI) %W(fixed)
Department A 512 89 313 19 1.15063e-05 0.999996 0.349 -1.052 [0.209, 0.584] [-1.567, -0.537] 18.5
Department B 353 17 207 8 0.391761 0.759839 0.803 -0.22 [0.340, 1.892] [-1.078, 0.638] 3.7
Department C 120 202 205 391 0.826548 0.212876 1.133 0.125 [0.855, 1.502] [-0.157, 0.407] 28
Department D 138 131 279 244 0.318816 0.73277 0.921 -0.082 [0.686, 1.237] [-0.376, 0.212] 28.6
Department E 53 94 138 299 0.864569 0.184058 1.222 0.2 [0.825, 1.809] [-0.192, 0.593] 13.8
Department F 22 24 351 317 0.319845 0.780128 0.828 -0.189 [0.455, 1.506] [-0.787, 0.409] 7.3

Pooled odd ratio with MH method : 0.9047
Confident interval at 95.0% of pooled odd ratio : (0.7719, 1.0603)

>>> stratified_table.nb_combination
1719197241840
>>> stratified_table.gaste(alternative='less')
The support of the combined p-value is 1.72e+12, over the compute explicite threshold of 1.00e+07 , the moment matching estimator is used.
statistic: 29.8576, p-value: 0.0012
>>> stratified_table.gaste(alternative='greater')
The support of the combined p-value is 1.72e+12, over the compute explicite threshold of 1.00e+07 , the moment matching estimator is used.
statistic: 8.1468, p-value: 0.6862
>>> stratified_table.plot(thresh_adjust=0.03, save="analysis_admission.png")

image info

Example: Razzack AA, Hassan SA, Pasya SKR, et al. A Meta-Analysis of Association between Remdesivir and Mortality among Critically-Ill COVID-19 Patients. Infect Chemother. 2021;53(3):512-518. doi:10.3947/ic.2021.0060

>>> contingency_table = [
        [[59, 77], [482, 444]],
        [[301, 303], [2442, 2405]],
        [[3, 4], [190, 196]],
        [[22, 10], [128, 67]],
    ]
>>> strat_label = ["ACTT-1 2020", "SOLIDARITY 2020", "Spinner 2020", "Wang 2020"]
>>> rows = ("Remdesivir", "Placebo")
>>> columns = ("Event", "No event")
>>> stratified_table = StratifiedTable2x2(
        contingency_table, labels=strat_label, name_rows=rows, name_columns=columns
    )
>>> stratified_table.nb_combination
21881640
>>> stratified_table.gaste(alternative='less')
The support of the combined p-value is 2.19e+07, over the compute explicite threshold of 1.00e+07 , the moment matching estimator is used.
statistic: 29.8576, p-value: 0.1527
>>> stratified_table.gaste(alternative='greater')
The support of the combined p-value is 2.19e+07, over the compute explicite threshold of 1.00e+07 , the moment matching estimator is used.
statistic: 8.1468, p-value: 0.8658
    # Force exact calculation by increasing the limit threshold of exact computation
>>> stratified_table.gaste(alternative='less', limit_computation_exact=3*10**7)
The support of the combined p-value is 2.19e+07, under the compute explicite threshold of 3.00e+07 , the explicite calculation is used.
[137, 605, 8, 33] size 21881640
100%|██████████████████████████████████████████████████████| 21881640/21881640 [00:41<00:00, 524130.92it/s]
statistic: 29.8576, p-value: 0.1529
>>> stratified_table.plot(thresh_adjust=0.03, save="analysis_admission.png")

image info

Example without object StratifiedTable2x2, only get_pval_comb function

    # Data from Rothman, K.J. (1982). "Spermicide use and Down's syndrome," American Journal of Public Health, 72(4), pp. 399-401. doi 10.2105/AJPH.72.4.399.
>>> contingency_table = [[[3, 9], [104, 1059]], [[1, 3], [5, 89]]]
    # Format data to get (sample size, marginal A, marginal B)
>>> params = np.vstack((np.sum(contingency_table, axis=(1,2)), np.sum(contingency_table, axis=2).T[0], np.sum(contingency_table, axis=1).T[0])).T
>>> params
array([[1175,   12,  107],
       [  98,    4,    6]])
>>> # Same as : params = [[3+9+104+1059, 3+9, 3+104], [1+3+5+89, 1+3, 1+5]]
    # computation of p-value
>>> from scipy.stats import hypergeom
>>> pval_under = [hypergeom(*param).cdf(k) for param, k in zip(params, np.array(contingency_table)[:,0,0])]
>>> pval_under
[0.9818678457734665, 0.9821041004573289]
>>> pval_over = [hypergeom(*param).sf(k-1) for param, k in zip(params, np.array(contingency_table)[:,0,0])]
>>> pval_over
[0.08808167695347509, 0.2264843810557321]
>>> from gaste_test import get_pval_comb
>>> get_pval_comb(params, pval_under, "under")
0.9946415406410173
>>> get_pval_comb(params, pval_over, "over")
0.05029422728685044

Example of R wrapper with reticulate

As input to the StratifiedTable2x2 object, we have presented a contingency table in the form of an array of shape (nb_strat, 2,2) as. But we can also give as input a list of tuples 4 integers representing ($N_s$, $n_s$, $K_s$, $a_s$) where $N_s$ is the total count of events and non-events, $n_s is the count of events in both categories, $K_s$ is the total count in the first category, and $a_s$ is the count of events in the first category. This is illustrated below when using the package in R through reticulate

> library(reticulate)
> py_install("gaste-test")
> gaste <- import("gaste_test", delay_load = TRUE, convert = TRUE)
> params <- list(c(300, 80, 60, 15),
+                c(300, 70, 50, 5), 
+                c(250, 130, 40, 20), 
+                c(300, 80, 60, 18))
> params_ <- r_to_py(params)
> stb <- gaste$StratifiedTable2x2(params_)
> stb$resume()
           $k_s$  $K_s-k_s$  ...           log(CI)  %W(fixed)
Studies                      ...                             
Stratum 0     15         45  ...   [-0.758, 0.542]       26.4
Stratum 1      5         45  ...  [-2.117, -0.185]       26.4
Stratum 2     20         20  ...   [-0.772, 0.581]       23.8
Stratum 3     18         42  ...   [-0.416, 0.831]       23.5

[4 rows x 11 columns]

Pooled odd ratio with MH method :  0.8251
Confident interval at 95.0% of pooled odd ratio : (0.586, 1.1618)
> stb$gaste('less')
The support of the combined p-value is 7.78e+06, under the compute explicite threshold of 1.00e+07 , the explicite calculation is used.
[61, 51, 41, 61] size 7780611 max supp 61
100%|██████████| 7780611/7780611 [00:12<00:00, 640481.60it/s]
statistic: 13.1942, p-value: 0.0586
> stb$gaste('greater')
The support of the combined p-value is 7.78e+06, under the compute explicite threshold of 1.00e+07 , the explicite calculation is used.
[61, 51, 41, 61] size 7780611 max supp 61
100%|██████████| 7780611/7780611 [00:12<00:00, 621091.29it/s]
statistic: 3.9103, p-value: 0.7847
> stb$plot(save='test.png')

Documentation

For detailed information on how to use the Gaste package, please refer to the sphinx documentation

Contributing

We welcome contributions from the community! If you would like to contribute to the Gaste package, feel free to contact the autor by mail.

License

The Gaste package is licensed under the MIT License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

gaste_test-0.1.0-py3-none-any.whl (19.8 kB view details)

Uploaded Python 3

File details

Details for the file gaste_test-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: gaste_test-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 19.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for gaste_test-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cb9c3cb1187d3bdf54812fc18445522f7730f133011bbbebcaeb121ef58cf276
MD5 6ab455c77f4107422a66f09c41c4347a
BLAKE2b-256 6bc6e9a98b86c30f2dbe23d366045149475d421f33ded5e530cc8b57211e13a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page