Unofficial Gato: A Generalist Agent
Project description
Unofficial Gato: A Generalist Agent
[Deepmind Publication] [arXiv Paper]
This repository contains Deepmind's Gato architecture imitation in TensorFlow.
Since Deepmind only mentions parts of the architecture in its paper, We still don't know much about the model.
However, I believe the paper is enough to imitate the architecture, I'm trying to do that with the open source community's help.
Currently, the repository supports the following operations:
- Gato (via
Gato
) - Transformer (via
Transformer
) - Patch Position Encodings (via
PatchPositionEncoding
) - Embedding Function (via
ResidualEmbedding
) - Local Observation Position Encodings (via
LocalPositionEncoding
) - Tokenizing Continuous Values (via
ContinuousValueTokenizer
) - Shared Embedding (via
DiscreteEmbedding
)
Action tokens are still a mystery in the paper, I need your help.
However, the repository lacks the following miscellaneous.
- Datasets (most important, Issue: #1, ThomasRochefortB/torch-gato)
- Pre-trained tokenizers (No longer required because of E2E model)
- Training strategy (E2E, WIP)
But, you can still explore the basic architecture of the Gato based on the paper.
Usage
$ pip install gato-tf
import tensorflow as tf
from gato import Gato, GatoConfig
# Create model instance
config = GatoConfig.small()
gato = Gato(config)
# Fake inputs for Gato
input_dim = config.input_dim
input_ids = tf.concat([
# ...
# observation 1
tf.random.uniform((1, 1, input_dim)), # image patch 0
tf.random.uniform((1, 1, input_dim)), # image patch 1
tf.random.uniform((1, 1, input_dim)), # image patch 2
# ...
tf.random.uniform((1, 1, input_dim)), # image patch 19
tf.fill((1, 1, input_dim), value=0.25), # continuous value
tf.fill((1, 1, input_dim), value=624.0), # discrete (actions, texts)
# observation 2
tf.random.uniform((1, 1, input_dim)), # image patch 0
tf.random.uniform((1, 1, input_dim)), # image patch 1
tf.random.uniform((1, 1, input_dim)), # image patch 2
# ...
tf.random.uniform((1, 1, input_dim)), # image patch 19
tf.fill((1, 1, input_dim), value=0.12), # continuous value
tf.fill((1, 1, input_dim), value=295.0) # discrete (actions, texts)
# ...
], axis=1)
encoding = tf.constant([
# 0 - image patch embedding
# 1 - continuous value embedding
# 2 - discrete embedding (actions, texts)
[0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2]
])
row_pos = (
tf.constant([[0.00, 0.25, 0.50, 0.75, 0, 0, 0.00, 0.25, 0.50, 0.75, 0, 0]]), # pos_from
tf.constant([[0.25, 0.50, 0.75, 1.00, 0, 0, 0.25, 0.50, 0.75, 1.00, 0, 0]]) # pos_to
)
col_pos = (
tf.constant([[0.00, 0.00, 0.00, 0.80, 0, 0, 0.00, 0.00, 0.00, 0.80, 0, 0]]), # pos_from
tf.constant([[0.20, 0.20, 0.20, 1.00, 0, 0, 0.20, 0.20, 0.20, 1.00, 0, 0]]) # pos_to
)
obs = (
tf.constant([[ 0, 1, 2, 19, 20, 21, 0, 1, 2, 19, 20, 21]]), # obs token
tf.constant([[ 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0]]) # obs token masking (for action tokens)
)
hidden_states = gato((input_ids, (encoding, row_pos, col_pos), obs))
Dataset and Model Architecture
Paper Reviews
Full Episode Sequence
Architecture Variants
Appendix C.1. Transformer Hyperparameters
In the paper, Deepmind tested Gato with 3 architecture variants, 1.18B
, 364M
, and 79M
.
I have named them as large()
, baseline()
and small()
respectively in GatoConfig
.
Hyperparameters | Large(1.18B) | Baseline(364M) | Small(79M) |
---|---|---|---|
Transformer blocks | 24 | 12 | 8 |
Attention heads | 16 | 12 | 24 |
Layer width | 2048 | 1536 | 768 |
Feedforward hidden size | 8192 | 6144 | 3072 |
Key/value size | 128 | 128 | 32 |
Residual Embedding
Appendix C.2. Embedding Function
There are no mentions that how many residual networks must be stacked for token embeddings.
Therefore, I remain configurable in GatoConfig
.
Whatever how many residual layers are existing, full-preactivation is a key.
The blocks are consisted of:
- Version 2 ResNet architecture (based on ResNet50V2)
- GroupNorm (instead of LayerNorm)
- GeLU (instead of ReLU)
Position Encodings
Appendix C.3. Position Encodings
Patch Position Encodings
Like Vision Transformer (ViT) by Google, Gato takes the input images as raster-ordered 16x16 patches.
Unlike the Vision Transformer model, however, Gato divides its patch encoding strategy into 2 phases, training and evaluation.
For high-performance computation in TensorFlow, I have used the following expressions.
$C$ and $R$ mean column and row-wise, and $F$ and $T$ mean from
and to
respectively.
$$ \begin{align} v^R_F &= \begin{bmatrix} 0 & 32 & 64 & 96 \end{bmatrix} \ v^R_T &= \begin{bmatrix} 32 & 64 & 96 & 128 \end{bmatrix} \ v^C_F &= \begin{bmatrix} 0 & 26 & 51 & 77 & 102 \end{bmatrix} \ v^C_T &= \begin{bmatrix} 26 & 51 & 77 & 102 & 128 \end{bmatrix} \ \ P_R &= \begin{cases} \mathsf{if} \ \mathsf{training} & v^R_F + \mathsf{uniform}(v^R_T - v^R_F) \ \mathsf{otherwise} & \mathsf{round}(\frac{v^R_F + v^R_T}{2}) \end{cases} \ P_C &= \begin{cases} \mathsf{if} \ \mathsf{training} & v^C_F + \mathsf{uniform}(v^C_T - v^C_F) \ \mathsf{otherwise} & \mathsf{round}(\frac{v^C_F + v^C_T}{2}) \end{cases} \ \ E^R_P &= P_R \cdot 1^{\mathsf{T}}_C \ E^C_P &= 1^{\mathsf{T}}_R \cdot P_C \ \ \therefore E &= E_I + E^R_P + E^C_P \end{align} $$
Local Observation Position Encodings
In the definition of Appendix B., text tokens, image patch tokens, and discrete & continuous values are observation tokens
When Gato receives those values, they must be encoded with their own (local) time steps.
Requirements
pip install tensorflow>=2.11.0
Contributing
This repository is still a work in progress.
Currently, no downloads and no executables are provided.
I welcome many contributors who can help.
License
Licensed under the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gato-tf-0.0.4.tar.gz
.
File metadata
- Download URL: gato-tf-0.0.4.tar.gz
- Upload date:
- Size: 12.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2f3954448df6c32be79cf4da587fae2e8a9626c89db3cdea00b94bf94d0fdaa6 |
|
MD5 | 8c1f9e86d8a5c3761faea8b45dbbbab6 |
|
BLAKE2b-256 | a68dbf98e8af2dcc809db898e1e4545a38b3200178ade4808565b30a58d00e41 |
File details
Details for the file gato_tf-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: gato_tf-0.0.4-py3-none-any.whl
- Upload date:
- Size: 11.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.16
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8dadb41da9fe748721d750a5372d69f58b8a07e2123620372ff935d51c5e28c0 |
|
MD5 | cb1618bc45ce3bdcf6de23055f62b210 |
|
BLAKE2b-256 | b76f8c7b6e986ae636d8bf37e1aae8133e5721601281e01434ea68bf99a0cc11 |