Skip to main content

A simple library for calculating Gauge RnR

Project description

Gauge R&R

GitHub PyPi License

Table of Contents

  1. Install
  2. CLI
  3. Example
  4. Statistics

Install

From PyPi:

pip install GaugeRnR

From source:

pip install -e .

Development dependencies:

pip install -r pip/requirements-dev.txt

CLI

The package can be used to generate reports from CLI:

GaugeRnR -f data/data_mXop.csv -s 3,5,11 -o outDir

This generates a html report that is stored in the outDir folder.

Setting the axes parameter is usefull if the data is not structured correct:

GaugeRnR -f data/data_opXm.csv -s 5,7,11 -a 2,1,0 -o outDir

To calculate linearity and bias ground truth is required:

GaugeRnR -f data/data_demoGRnR.csv -s 3,10,3 -a 0,2,1 -g 40,42,30,43,29,45,27.5,42,26,35 -o outDir

For more help run:

GaugeRnR -h
GaugeRnR.

The input data should be structeted
in a 3d array n[i,j,k] where
i = operator, j = part, k = measurement
Stored to file this data would look:
m1    m2    m3
3.29; 3.41; 3.64  # p1 | o1
2.44; 2.32; 2.42  # p2
3.08; 3.25; 3.07  # p1 | o2
2.53; 1.78; 2.32  # p2
3.04; 2.89; 2.85  # p1 | o3
1.62; 1.87; 2.04  # p2

More info: https://github.com/owodunni/GaugeRnR

Usage:
    GaugeRnR -f FILE -s STRUCTURE [-a <AXES>] [-d <DELIMITER>] [-o <FOLDER>] [-g <PARTS>]
    GaugeRnR -h | --help
    GaugeRnR -v | --version

Examples:
    GaugeRnR -f data.csv -s5,7,11 -o report
    GaugeRnR -f data/data_mXop.csv -s 3,5,11 -o outDir
    GaugeRnR -f data/data_opXm.csv -s 5,7,11 -a 2,1,0 -o outDir
    GaugeRnR -f data/data_demoGRnR.csv -s 3,10,3 -a 0,2,1 -g 40,42,30,43,29,45,27.5,42,26,35 -o outDir

Options:
    -f --file=FILE Load input data.
    -s --structure=STRUCTURE Data structure.
        Order should be operators, parts, measurements.
    -a --axes=<AXES>  Order of data axes [default: 0,1,2].
    -d --delimiter=<DELIMITER>  Order of data axes [default: ;].
    -o --output=<FOLDER> Report output directory
    -g --groundTruth=<PARTS> Ground Truth data for parts
    -h --help     Show this screen.
    -v --version  Show version.

Example

The package can be used in the following way:

from gaugeRnR import GaugeRnR
import numpy as np

# The input should be structeted in a 3d
# numpy array n[i,j,k] where
# i = operator, j = part, k = measurement
# Example:
#       m1    m2    m3
data = np.array(            #
    [[[3.29, 3.41, 3.64],   # p1 | o1
      [2.44, 2.32, 2.42],   # p2
      [4.34, 4.17, 4.27],   # p3
      [3.47, 3.5, 3.64],    # p4
      [2.2, 2.08, 2.16]],   # p5
     [[3.08, 3.25, 3.07],   # p1 | o2
      [2.53, 1.78, 2.32],   # p2
      [4.19, 3.94, 4.34],   # p3
      [3.01, 4.03, 3.2],    # p4
      [2.44, 1.8, 1.72]],   # p5
     [[3.04, 2.89, 2.85],   # p1 | o3
      [1.62, 1.87, 2.04],   # p2
      [3.88, 4.09, 3.67],   # p3
      [3.14, 3.2, 3.11],    # p4
      [1.54, 1.93, 1.55]]]) # p5

g = GaugeRnR(data)
g.calculate()
print(g.summary())

This will result in the following table:

Sources of Variance DF SS MS Var (σ²) Std (σ) F-value P-value
Operator 2 1.63 0.815 0.054 0.232 100.322 0.000
Part 4 28.909 7.227 0.802 0.896 889.458 0.000
Operator by Part 8 0.065 0.008 0 0 0.142 0.996
Measurment 30 1.712 0.057 0.057 0.239
Total 44 32.317 0.734 0.913 0.956

To access the result from the Gauge RnR data directly:

from gaugeRnR import GaugeRnR, Component, Result

.
.
.

g = GaugeRnR(data)
result = g.calculate()
F = result[Result.F]
>>> print(F[Component.OPERATOR])
100.322

For more examples of how to use this library take a look at the unit tests!

Statistics

The pacakge can generate the following statistics:

  • GaugeRnR

    Gauge R&R, which stands for gage repeatability and reproducibility, is a statistical tool that measures the amount of variation in the measurement system arising from the measurement device and the people taking the measurement.

    Unfortunately, all measurement data contains a certain percentage of variation. The variation is the difference between the true values and the observed values. The variation represents the amount of measurement error. In addition to measurement error, is the actual product or process variation. When we combine measurement error with product or process variation the resulting value represents the total variation. To assure that our measurement data is accurate we must determine if the amount of variation is acceptable

    If the p value is less than 0.05, it means that the source of variation has a significant impact on the results.

    For more information take a look at:

  • Mean, Standard Deviation and bar chart plots.

    To get a better feel for our measurement data we can plot it togheter with a bar chart and show some caracteristic statistics of the data.

  • Normality test

    For Gauge R&R to work it is important that our data is normal distibuted. If we don't have enough data the it might not be normal distributed. We can test if the data is normal distributed using a Shapiro-Wilk Test. Small values of W are evidence of departure from normality. It is important that our parts are normally distributed. A P-value smaller then 0.05 indicates that the data is not Gaussian.

    For more information take a look at:

  • Linearity and Bias - requires ground truth data

    Bias and linearity assess the accuracy of a gage.

    • Bias examines the difference between the observed average measurement and a reference value. Bias indicates how accurate the gage is when compared to a reference value.
    • Linearity examines how accurate your measurements are through the expected range of the measurements. Linearity indicates whether the gage has the same accuracy across all reference values.

    A P-value smaller then 0.05 indicates that a linear equation fits well to the data.

    For more information take a look at:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

GaugeRnR-0.6.0.tar.gz (34.4 kB view details)

Uploaded Source

Built Distribution

GaugeRnR-0.6.0-py3-none-any.whl (39.9 kB view details)

Uploaded Python 3

File details

Details for the file GaugeRnR-0.6.0.tar.gz.

File metadata

  • Download URL: GaugeRnR-0.6.0.tar.gz
  • Upload date:
  • Size: 34.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.0

File hashes

Hashes for GaugeRnR-0.6.0.tar.gz
Algorithm Hash digest
SHA256 179b44c3ab42b38ee1512421af21bcb446cb554317814cfd8bc5201b5513e469
MD5 e002102ccee839718312595c144b352d
BLAKE2b-256 0ea8c912fc8f6f0c99777257b8a8fd9475267cf12045ebd644940fe4d3329978

See more details on using hashes here.

File details

Details for the file GaugeRnR-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: GaugeRnR-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 39.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.8.0

File hashes

Hashes for GaugeRnR-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6421bcf0870d9a6a20c890cf964039e7849d0d518b60845c0a0f2a172c1cf09e
MD5 5fd521720dabc971fc18a8b397c85be7
BLAKE2b-256 cee20d0e5a713f37c7de7f5ecff075b715bd5e00b0747fabfc16ff788146a783

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page