Skip to main content

Gaussian process regression

Project description

licence docs

A python package for machine learning with Gaussian process regression.

This package is under development and has not been released.

Features

  • TODO

Interactive Tutorial

binder

Launch an online interactive tutorial in Jupyter notebook.

Install

Supported Platforms

Successful installation and tests have been performed on the following platforms and Python/PyPy versions shown in the table below.

Platform

Python version

PyPy version

Status

2.7

3.6

3.7

3.8

3.9

2.7

3.6

3.7

Linux

build-linux

macOS

build-macos

Windows

build-windows

  • For the Python/PyPy versions indicated by ✔ in the above, this package can be installed using either pip or conda (see Install Package below.)

  • This package cannot be installed via pip or conda on the Python/PyPy versions indicated by ✖ in the above table.

  • To install on the older Python 3 versions that are not listed in the above (for example Python 3.5), you should build this package from the source code (see Build and Install from Source Code).

Dependencies

  • At runtime: TODO

  • For tests: To run Test, scipy package is required and can be installed by

    python -m pip install -r tests/requirements.txt

Install Package

Either Install from PyPi, Install from Anaconda Cloud, or Build and Install from Source Code.

Install from PyPi

pypi format implementation pyversions

The recommended installation method is through the package available at PyPi using pip.

  1. Ensure pip is installed within Python and upgrade the existing pip by

    python -m ensurepip
    python -m pip install --upgrade pip

    If you are using PyPy instead of Python, ensure pip is installed and upgrade the existing pip by

    pypy -m ensurepip
    pypy -m pip install --upgrade pip
  2. Install this package in Python by

    python -m pip install gaussian_process

    or, in PyPy by

    pypy -m pip install gaussian_process

Install from Anaconda Cloud

conda-version conda-platform

Alternatively, the package can be installed through Anaconda could.

  • In Linux and Windows:

    conda install -c s-ameli gaussian_process
  • In macOS:

    conda install -c s-ameli -c conda-forge gaussian_process

Build and Install from Source Code

release

Build dependencies: To build the package from the source code, numpy and cython are required. These dependencies are installed automatically during the build process and no action is needed.

  1. Install both C and Fortran compilers as follows.

    • Linux: Install gcc, for instance, by apt (or any other package manager on your Linux distro)

      sudo apt install gcc
    • macOS: Install gcc via Homebrew:

      sudo brew install gcc

      Note: If gcc is already installed, but Fortran compiler is yet not available on macOS, you may resolve this issue by reinstalling:

      sudo brew reinstall gcc
    • Windows: Install both Microsoft Visual C++ compiler and Intel Fortran compiler (Intel oneAPI). Open the command prompt (where you will enter the installation commands in the next step) and load the Intel compiler variables by

      C:\Program Files (x86)\Intel\oneAPI\setvars.bat

      Here, we assumed the Intel Fortran compiler is installed in C:\Program Files (x86)\Intel\oneAPI. You may set this directory accordingly to the directory of your Intel compiler.

  2. Clone the source code and install this package by

    git clone https://github.com/ameli/gaussian_process.git
    cd gaussian_process
    python -m pip install .

Warning: After the package is built and installed from the source code, the package cannot be imported properly if the current working directory is the same as the source code directory. To properly import the package, change the current working directory to a directory anywhere else outside of the source code directory. For instance:

cd ..
python
>>> import gaussian_process

Test

codecov-devel

To test package, install tox:

python -m pip install tox

and test the package with

tox

Modules

Syntax

User guide

todo(nu, z, n)

Module name todo <https://ameli.github.io/gaussian_process/module_name.html>`_

Typed Arguments:

Argument

Type

Description

nu

double

Parameter

Examples

Acknowledgements

  • National Science Foundation #1520825

  • American Heart Association #18EIA33900046

Credit

  • TODO.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gaussian_proc-0.12.6.tar.gz (434.2 kB view details)

Uploaded Source

Built Distributions

gaussian_proc-0.12.6-cp39-cp39-win_amd64.whl (739.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

gaussian_proc-0.12.6-cp39-cp39-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gaussian_proc-0.12.6-cp38-cp38-win_amd64.whl (739.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

gaussian_proc-0.12.6-cp38-cp38-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gaussian_proc-0.12.6-cp37-cp37m-win_amd64.whl (729.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

gaussian_proc-0.12.6-cp37-cp37m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

gaussian_proc-0.12.6-cp36-cp36m-win_amd64.whl (730.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

gaussian_proc-0.12.6-cp36-cp36m-macosx_10_9_x86_64.whl (1.0 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file gaussian_proc-0.12.6.tar.gz.

File metadata

  • Download URL: gaussian_proc-0.12.6.tar.gz
  • Upload date:
  • Size: 434.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6.tar.gz
Algorithm Hash digest
SHA256 d9146b5836ec2085fa6533613a25f567d7ba77e913b89c7d71d3feb1b82c0000
MD5 5f93e341dc9e51d349f71a6f1a37e01b
BLAKE2b-256 3ff6831ceec915a47178ac3136ba702086c3de80cc651b6b83886939d80faf24

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 739.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ba1ef0487af0661d106d96503d2bb9e0df8bc1d1d08a43c568319347e690f911
MD5 ceb022cacdcc926f211277bfd15a3df4
BLAKE2b-256 47a2a0a68edac12940a9e2c749288abcebf2fa8d7533db5fd0a5fcf591a9c614

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp39-cp39-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 671de8db847e16f73d62d938cc4990822d5fdc69a435d1b147c9e64e74fa3dde
MD5 f5f895b7020632eefeb807fb7e8902c5
BLAKE2b-256 653a89660c24ecfa751726bac0b0eec63b7c503e813e28f262dfcb2889ef9751

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 87dc0b320df0bb795c9109ae5dc8bd126a9c788c21d05dbc1c0e02de6592045f
MD5 32e9925fe3043913311fbdff953a30a8
BLAKE2b-256 8858e1d3a73e188a04cf5f75be7b9854b7fd5abe63d9f799f9c2fa2596aa17e1

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 739.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6bfc8f568fd97a6bdf5bda065aea8665eeb18c0106783daf2c4bad29c194e273
MD5 a2b2bec723b059559dccc3db1e5e8556
BLAKE2b-256 5ceb71a35fedb6e70c675741910e3381a28770f2c7e85bef6da10e578fab77b9

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp38-cp38-manylinux2014_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp38-cp38-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp38-cp38-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1d0ddff539df711068d2280d09425fa4b347ecf7427ceeaeadd49e7c9d12798e
MD5 7e4ac4069c7405d2acb15cbc04d36958
BLAKE2b-256 2cb09dbd27f8889e26d192f84bf0bed393818e7e30c3ca31c6d2757ea1570e49

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b7f63842c42e966ae48949c12f38e000c626f8f6868058446ce770e9ec0d384
MD5 3f37b7baf4cfbb5b2e3e62a0d364fe79
BLAKE2b-256 25b62ce24fcae360d81a7538e45bcd59a061fbb9506b87bbdc938906444179c1

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 729.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c6bb4231a6dda27f0748705cbb6c58b0b56342935ee702ed27ec9238bc9cdc4f
MD5 3fd88abac32c39c85eb3e9fb6f36fb2e
BLAKE2b-256 f0fcfbb96cffbf739417f2139958a5f822c4bfb6555cc53707bf63f3e6da0b73

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp37-cp37m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp37-cp37m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp37-cp37m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3748aa755f531cdb531ad1eb51db8cc6ad975fa33cd1895fa8999704d2d847ed
MD5 8443832eed0e6e544ecca70d800199d0
BLAKE2b-256 4d93a66cceba71ba799d281fa6255e09dc5607d6a319142eb2dda1db0d2d32ef

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f8c3e808235f77b6fda94e9ba32ad34cf27bdf0924012473968938121de30c3f
MD5 c2859f958c9319b6aa03c4f6ec85aac9
BLAKE2b-256 ceb37d7741d0fee5b51fc996ed5403c3b38a2abe5c8d1005f0f100d30af2ccf1

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 730.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5322d8890bda0e717a89ee024669068e51b7e5f64429a1b14a568ebef9d293a8
MD5 95ae00c3f53ee220eae69263d523effb
BLAKE2b-256 4168c900a5fe25796f0235a99ad096562fc9833a442cea40326007889737e26f

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp36-cp36m-manylinux2014_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp36-cp36m-manylinux2014_x86_64.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp36-cp36m-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 74e3ecf39dc2e053fdd03ba0f6ea314be7b9d9b4c5cddd6c95d2f53a0ec69a7f
MD5 f466ef8487c58eec07a621e53799bb2b
BLAKE2b-256 fd09e4906b818996464700cbaa96eba04f7f75a4dbe978c0b787c28feec173b0

See more details on using hashes here.

File details

Details for the file gaussian_proc-0.12.6-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: gaussian_proc-0.12.6-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 1.0 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for gaussian_proc-0.12.6-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ac7c975cd29a6155232d0e9d515da29b92fcd6ce1e15413235a915fd83313ea
MD5 0f7ce49b0272a8a57415985cb1c08139
BLAKE2b-256 e233586437744edc14a5a4d10cac7d861313e8280a642108ac995b00e314802a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page