Skip to main content

Implementation of Gaussian LDA topic model, with efficiency tricks

Project description

Gaussian LDA

Another implementation of the paper Gaussian LDA for Topic Models with Word Embeddings.

This is a Python implementation based as closely as possible on the Java implementation released by the paper's authors.

Installation

You'll first need to install the choldate package, following its installation instructions. (It's not possible to include this as a dependency for the PyPi package.)

Then install gaussianlda using Pip:

pip install gaussianlda

Usage

The package provides two classes for training Gaussian LDA:

  • Cholesky only, gaussianlda.GaussianLDATrainer: Simple Gibbs sampler with optional Cholesky decomposition trick.
  • Cholesky+aliasing, gaussianlda.GaussianLDAAliasTrainer: Cholesky decomposition (not optional) and the Vose aliasing trick.

The trainer is prepared by instantiating the training class:

  • corpus: List of documents, where each document is a list of int IDs of words. These are IDs into the vocabulary and the embeddings matrix.
  • vocab_embeddings: (V, D) Numpy array, where V is the number of words in the vocabulary and D is the dimensionality of the embeddings.
  • vocab: Vocabulary, given as a list of words, whose position corresponds to the indices using in the data. This is not strictly needed for training, but is used to output topics.
  • num_tables: Number of topics to learn.
  • alpha, kappa: Hyperparameters to the doc-topic Dirichlet and the inverse Wishart prior
  • save_path: Path to write the model out to after each iteration.
  • mh_steps (aliasing only): Number of Montecarlo-Hastings steps for each topic sample.

Then you set the sampler running for a specified number of iterations over the training data by calling trainer.sample(num_iters).

Example

import numpy as np
from gaussianlda import GaussianLDAAliasTrainer

# A small vocabulary as a list of words
vocab = "money business bank finance sheep cow goat pig".split()
# A random embedding for each word
# Really, you'd want to load something more useful!
embeddings = np.random.sample((8, 100), dtype=np.float32)
corpus = [
    [0, 2, 1, 1, 3, 0, 6, 1],
    [3, 1, 1, 3, 7, 0, 1, 2],
    [7, 5, 4, 7, 7, 4, 6],
    [5, 6, 1, 7, 7, 5, 6, 4],
]
# Prepare a trainer
trainer = GaussianLDAAliasTrainer(
    corpus, embeddings, vocab, 2, 0.1, 0.1
)
# Set training running
trainer.sample(10)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gaussianlda-0.2.4.tar.gz (49.7 kB view details)

Uploaded Source

Built Distribution

gaussianlda-0.2.4-py3-none-any.whl (57.7 kB view details)

Uploaded Python 3

File details

Details for the file gaussianlda-0.2.4.tar.gz.

File metadata

  • Download URL: gaussianlda-0.2.4.tar.gz
  • Upload date:
  • Size: 49.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.2

File hashes

Hashes for gaussianlda-0.2.4.tar.gz
Algorithm Hash digest
SHA256 5254bc8b81ffd00d0ae3bf4d6d435bb64f77b528bd6ca0831978b2b04995c41e
MD5 bded5bd25d31539d1d0309f165c39821
BLAKE2b-256 d4c2083c9aac3b0f50589ca4dd2056e826588b7b925e59c07e7a13d59551e9fe

See more details on using hashes here.

File details

Details for the file gaussianlda-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: gaussianlda-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 57.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.5.2

File hashes

Hashes for gaussianlda-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 03fc6a4618dbfe39f204a89116eaf60398810469d0a1c06a577fea0edc86e197
MD5 d410ced78b3f0ce6f35cd7bb9fce36e5
BLAKE2b-256 a18f0dc316110e3796e60c83c051073a90ede877b1d2afad8e7ef15065213f4d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page