This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

The Python package gazeclassifier provides functions to decide if given gaze points represent a saccade, fixation, or some unknown pattern.

The package gazeclassifier is developed at Infant Cognition Laboratory at University of Tampere.

1. Install

With pip:

$ pip install gazeclassifier

Compatible with Python 2.6, 2.7, 3.3, 3.4, and 3.5.

2. Usage

Import the lib:

>>> import gazeclassifier as gaze

Define gaze points as pointlists:

>>> g1 = [[0,0], [0,0], [1,1], [2,2], [2,2]]  # a saccade
>>> g2 = [[1,1], [1,1], [1,1], [1,1], [1,1]]  # a fixation
>>> g3 = [[1,1], [2,2], [0,0], [4,4], [1,1]]  # an unknown

Create a classifier. It is already pretrained and therefore able to predict:

>>> gc = gaze.GazeClassifier()
>>> gc.predict(g1)
>>> gc.predict(g2)
>>> gc.predict(g3)

Internally, predict first extracts features from pointlists before classification. The features can be extracted explicitly with extract_features and extract_raw_features:

>>> gaze.extract_features(g1)
  'saccade_reaction': 1,
  'saccade_duration': 3,
  'saccade_mse': 0.000623,
  'fixation_mse': 0.232406

>>> gaze.extract_raw_features(g1)
  'saccade': {
    'source_points': [[0,0]],
    'saccade_points': [[0,0], [1,1], [2,2]],
    'target_points': [[2,2]],
    'mean_squared_error': 0.000623
  'fixation': {
    'centroid': [[1.0,1.0]]
    'mean_squared_error': 0.232406,

As an alternative for using the default pretrained classifier, you can train one:

>>> training_data = [g1, g2, g3]
>>> classes = ['saccade', 'fixation', 'unknown']
>>> gc = gaze.GazeClassifier()
>>>, classes)

The trained classifier has same API as the default:

>>> gc.predict(g1)

3. API

3.1. gazeclassifier.predict(pointlist)


  • pointlist: a list of [x, y] points i.e. a list of lists
    • OR alternatively the result dict from extract_features. This is convenient if you need access to the features and want to prevent predict to re-extract them.

Return a string which can be one of the following:

  • 'saccade': gaze travels from point A to B and otherways stays still
  • 'fixation': gaze has mainly stayed still
  • 'unknown': gaze cannot be regarded as any of the above

3.2. gazeclassifier.extract_features(pointlist)


  • pointlist: a list of [x, y] points i.e. a list of lists

Return a dict that contains mean error and details for each hypothesis. The dict can be fed into classify for classification.

3.3. gazeclassifier.extract_raw_features(pointlist)


  • pointlist: a list of [x, y] points i.e. a list of lists

Return a dict that contains mean error and details for each hypothesis. The dict can be fed into predict for classification.

3.4. gazeclassifier.GazeClassifier()

A new untrained classifier.

3.5. gazeclassifier.GazeClassifier#fit(pointlists, classes)

3.6. gazeclassifier.GazeClassifier#predict(pointlist_or_features)

3.7. gazeclassifier.version

The current version string:

>>> gazeclassifier.version

4. For developers

Tips for the developers of the package.

4.1. Use Git

To develop, clone the repository from GitHub:

$ git clone

Make changes to files, add them to commit, and do commit:

(edit README.rst)
$ git add README.rst
$ git commit -m "Improved documentation"

List files that are not added or not committed:

$ git status

Push local commits to GitHub:

$ git push

Ignore some files by editing .gitignore:

$ nano .gitignore

4.2. Virtualenv

Manage python versions and requirements by using virtualenv:

$ virtualenv -p python3.5 gazeclassifier-py
$ cd gazeclassifier-py
$ source bin/activate
$ deactivate

4.3. Testing

Follow instructions to install pyenv and then either run quick tests:

$ python3.5 test

or run comprehensive tests for multiple Python versions listed in tox.ini:

$ pyenv local 2.6.9 2.7.10 3.3.6 3.4.3 3.5.0
$ eval "$(pyenv init -)"
$ pyenv rehash
$ tox

Install new pyenv environments for example by:

$ pyenv install 3.5.0

Validate README.rst at

4.4. Publishing to PyPI

Follow python packaging instructions:

  1. Create an unpacked sdist: $ python sdist
  2. Create a universal wheel: $ python bdist_wheel --universal
  3. Go to PyPI and register the project by filling the package form by uploading gazeclassifier.egg-info/PKG_INFO file.
  4. Upload the package with twine:
    1. Sign the dist: $ gpg --detach-sign -a dist/gazeclassifier-1.2.3*
    2. Upload: twine upload dist/gazeclassifier-1.2.3* (will ask your PyPI password)
  5. Package published!

Updating the package takes same steps except the 3rd.

4.5 Version release

  1. Change version string in gazeclassifier/ and to '1.2.3'
  2. Run tox tests. See 4.3. Testing.
  3. Git commit: $ git commit --all -m "v1.2.3 release"
  4. Create tag: $ git tag -a 1.2.3 -m "v1.2.3 stable"
  5. Push commits and tags: $ git push && git push --tags
  6. Publish to PyPI. See 4.4. Publishing to PyPI.

6. License

MIT License

Release History

Release History


This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting