Skip to main content

A Python interface to gb-io, a fast GenBank parser written in Rust.

Project description

🧬🏦 gb-io.py Stars

A Python interface to gb-io, a fast GenBank parser written in Rust.

Actions Coverage License PyPI Wheel Python Versions Python Implementations Source Mirror GitHub issues Changelog Downloads

🗺️ Overview

gb-io.py is a Python package that provides an interface to gb-io, a very fast GenBank format parser implemented in Rust. It can reach much higher speed than the Biopython or the scikit-bio parsers.

This library has no external dependency and is available for all modern Python versions (3.7+).

🔧 Installing

Install the gb-io package directly from PyPi which hosts pre-compiled wheels that can be installed with pip:

$ pip install gb-io

Wheels are provided for the following platforms:

  • Linux, CPython, x86-64
  • Linux, CPython, Aarch64
  • MacOS, CPython, x86-64
  • MacOS, PyPy, x86-64
  • Windows, CPython, x86-64
  • Windows, PyPy, x86-64

Otherwise, the source distribution will be downloaded, and a local copy of the Rust compiler will be downloaded to build the package, unless it is already installed on the host machine.

💡 Usage

Use the gb_io.load function to obtain a list of all GenBank records in a file:

records = gb_io.load("tests/data/AY048670.1.gb")

Reading from a file-like object is supported as well, both in text and binary mode:

with open("tests/data/AY048670.1.gb") as file:
    records = gb_io.load(file)

It is also possible to iterate over each record in the file without having to load the entirety of the file contents to memory with the gb_io.iter method, which returns an iterator instead of a list:

for record in gb_io.iter("tests/data/AY048670.1.gb"):
    print(record.name, record.sequence[:10])

You can use the gb_io.dump method to write one or more records to a file (either given as a path, or a file-like handle):

with open("tests/data/AY048670.1.gb", "wb") as file:
    gb_io.dump(records, file)

📝 Example

The following small script will extract all the CDS features from a GenBank file, and write them in FASTA format to an output file:

import gb_io

with open("tests/data/AY048670.1.faa", "w") as dst:
    for record in gb_io.iter("tests/data/AY048670.1.gb"):
        for feature in filter(lambda feat: feat.type == "CDS", record.features):
            qualifiers = feature.qualifiers.to_dict()
            dst.write(">{}\n".format(qualifiers["locus_tag"][0]))
            dst.write("{}\n".format(qualifiers["translation"][0]))

Compared to similar implementations using Bio.SeqIO.parse, Bio.GenBank.parse and Bio.GenBank.Scanner.GenBankScanner.parse_cds_features, the performance is the following:

gb_io.iter GenBankScanner GenBank.parse SeqIO.parse
Time (s) 2.264 7.982 15.259 19.351
Speed (MiB/s) 136.5 37.1 20.5 16.2
Speedup x8.55 x2.42 x1.27 -

💭 Feedback

⚠️ Issue Tracker

Found a bug ? Have an enhancement request ? Head over to the GitHub issue tracker if you need to report or ask something. If you are filing in on a bug, please include as much information as you can about the issue, and try to recreate the same bug in a simple, easily reproducible situation.

🏗️ Contributing

Contributions are more than welcome! See CONTRIBUTING.md for more details.

⚖️ License

This library is provided under the MIT License. The gb-io Rust crate package was written by David Leslie and is licensed under the terms of the MIT License. This package vendors the source of several additional packages that are licensed under the Apache-2.0, MIT or BSD-3-Clause licenses; see the license file distributed with the source copy of each vendored dependency for more information.

This project is in no way not affiliated, sponsored, or otherwise endorsed by the original gb-io authors. It was developed by Martin Larralde during his PhD project at the European Molecular Biology Laboratory in the Zeller team.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gb-io-0.2.1.tar.gz (19.6 MB view details)

Uploaded Source

Built Distributions

gb_io-0.2.1-pp39-pypy39_pp73-win_amd64.whl (273.7 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (430.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (371.2 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.2.1-pp38-pypy38_pp73-win_amd64.whl (273.5 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (433.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (371.4 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.2.1-pp37-pypy37_pp73-win_amd64.whl (275.2 kB view details)

Uploaded PyPy Windows x86-64

gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (428.2 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (432.8 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (373.3 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

gb_io-0.2.1-cp311-cp311-win_amd64.whl (273.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

gb_io-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (429.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-cp311-cp311-macosx_11_0_arm64.whl (372.5 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

gb_io-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl (371.1 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

gb_io-0.2.1-cp310-cp310-win_amd64.whl (273.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

gb_io-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (429.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-cp310-cp310-macosx_11_0_arm64.whl (372.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

gb_io-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl (371.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

gb_io-0.2.1-cp39-cp39-win_amd64.whl (274.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

gb_io-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (429.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-cp39-cp39-macosx_11_0_arm64.whl (372.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

gb_io-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl (371.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

gb_io-0.2.1-cp38-cp38-win_amd64.whl (274.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

gb_io-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (425.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (429.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-cp38-cp38-macosx_11_0_arm64.whl (373.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

gb_io-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl (371.5 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

gb_io-0.2.1-cp37-cp37m-win_amd64.whl (274.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

gb_io-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (426.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

gb_io-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (429.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

gb_io-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl (371.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file gb-io-0.2.1.tar.gz.

File metadata

  • Download URL: gb-io-0.2.1.tar.gz
  • Upload date:
  • Size: 19.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb-io-0.2.1.tar.gz
Algorithm Hash digest
SHA256 bd5439c8f3ab29ad8cf3575da44bcd53cde4a7c2806e9ee33a8c46fca8061ab0
MD5 91fb990628ac96e67c8ed653a2d4012f
BLAKE2b-256 db308b676cd97baca2a8f427e549933c17280973afe925fe6e8111e58efdc0c7

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a43a7f420b51fdb3af772332ed06321017f75d6af2e64074881278d13fb8f9e6
MD5 0dfe3c4aaa623021a938e56989e158d3
BLAKE2b-256 9c684c1ef2c6369a213af0780ea3d947fed80476f987c1bffb3b14d0e8071873

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b4f683c66942536334bf37f3609d6a511e6b8efddd2eb5cc3dc5eccbfa95169
MD5 88b8b770568a73b058fb6f6ade0955e1
BLAKE2b-256 65a6fe16e24cad48bd4156c7a2b31864322858c18f885bbe18412d8182e02e37

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 becffd472894972f4b7809a804fd93ae15d26c5d2027d8a50910acf7de059638
MD5 b1245cbe2679066ab322110a16b6a6a8
BLAKE2b-256 b57e21ed807e01217b49e57b5485227b77aaf18a84e8782f8bfe0f6c18ad2c48

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b628e783f94fb9878535015cd864d46e99e460a08b4e57c69f922c270396f2cc
MD5 7b53f4791478e1e3fdda0c7e444ba4e0
BLAKE2b-256 39601694449bd3fc43362edf3f50c7a01eecb2db93d6af44f99b599935d29219

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 ed27de9a14edb79257eac33410afce0b0938f5b9f2d9b57c558506a19ccac360
MD5 ddf723cfb56408052616c741927ed83a
BLAKE2b-256 5be6b315dd9a69af39fd88f8d37c50f167f335cfd3c3df39e197b463ecdc471e

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 83438a5888f58b41070a17f2f52c8ea19f30a03a8ec8bd8758dea8648d81d57c
MD5 7ff78d78012031cea3b17e0f4f6ced74
BLAKE2b-256 a5b8aeb136fc8c5b772b06a19003e9ff03042156383232855a579cf461a611ab

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3ac7c2e6cb9c3e06486f3fd80f209b02391bac86f5bb3db3a79a7b7a525edf34
MD5 537fd7bfbf92302d03118b01f3c2ef82
BLAKE2b-256 cb9ed687eff212ca6bcef0cbcca5c736631fd42a887befdba26cdd52a0507564

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 50f94a971e4417b6dcf055289801ec616004900c307bf60e2cd2e74e6b916730
MD5 45395783bcedd390610c5d418c017572
BLAKE2b-256 907c3474e3f259493a97862b38bbab0471c4b7db8de7a3f373caf56db622d5c2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 423f3f9878aa17c780aeb84abe2b4535e059e27fc81e202a22c6fb524aaf0bf2
MD5 b9814d6df3a95bad01e1b1dd104142e0
BLAKE2b-256 8508ce4233b701de2cbcb89f3656229881a57b0a7ef96775ecea7431a85415fe

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 698dbd03b4d4055cb5a59d996b6a1f2f839a425509be25cd7f8d6772b6665f24
MD5 cbba52abec604e966ea9f4d09b3d8c64
BLAKE2b-256 a53da73eec5cb8eb6c8b99bb981da00437858e4610c75f97c85ba4619ea72d33

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ff1eb048ec159c092d4442a89f64a298ae92c233eeb61ed9f2cb774c710e90f6
MD5 44962e4e1236f9830910d1c45b9ebad5
BLAKE2b-256 8b917beb0dd7da36417f68c5e735231b80806e8a513879f0d137d5e21c60c9f8

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bdcd5ff850fb0811ded5dc90d1a68a0162dbb361aac45968031e04a874e2bd59
MD5 247136ed715f9bed138c3ba1d3d488fd
BLAKE2b-256 d8a1c1f657642e2b21592c001d66865e1cb94ac4394ee3bd5f7a8bfc601154fb

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 273.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb_io-0.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 76140f3918ce32e94a106d6a2938f7e26f19c34909e59a292b83aaba56c2c853
MD5 92581202ed52f1661aca9ac4f640c77c
BLAKE2b-256 4b03513c7397603c9d4a02c545c4145dde4099c3ea5cc0a0a148f5036a1b88c2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4f5c7b2692dea2defd093486e5fb3ae597a30732da52d6d86ea644ed68a8bf4
MD5 9af213aad47b1bc804963e8eb7672218
BLAKE2b-256 d4b6e71dd95ba477c2758398ee9142bb9c040323b64348400fbd9c31bd600981

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07265f6714e561b68b0a429a34992c04035bd81cb37bb1655d6c21a00a199af0
MD5 6b2dd948f2c6b46c92288a6ad2a4763e
BLAKE2b-256 554f07a83e70469dfff5c00b3a83f52138e2714eea9998d1f839a8f4e6fd2046

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7bc6bd6774371dfd8b8ec27c451073092962ddbc59ab5591aa0e145764b2ef03
MD5 94305a0af8433230a014ef26a0ef9366
BLAKE2b-256 038b400dcee063b6b249f090bcc1192d2259c6e88b8f91ff03ca73b2af2dfb82

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 caf7550b88302f637c015621c2ea76307823611aac72653b357a823cd3cd1b87
MD5 37618c1425bac65895c246fcf581542a
BLAKE2b-256 3bb611ba9af3b791e436afe337c9a3b651e5c9cfd8be5c267f00ac72aafb6fa8

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 273.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb_io-0.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ab72430e8eaa3a8d058c2ed7d836d74281423e35582cbc2ac0f0b9b86285fe59
MD5 e8879da9fe7833bb73799d42c3a30f8b
BLAKE2b-256 44767c9047958c727752d3be569bdaef1110d1f06d493a60cb12ae92b134e62d

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bec7f8836b61bfd6343f2f4fd31e4f162ec623877ccc3805834e40d7875690d
MD5 11b8244fcd7a05ebd921c28362072bcf
BLAKE2b-256 f2d5a9442b12e7d82d37ea317aad94c4160df9fd2b9f461a0981b769c6a76f85

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c62881711ad3a9b706be9767f04392e33817ea16b4a6b5ed1cbcdb17f7e4770
MD5 95c0e5045abbadd94b9ee33b45867ccb
BLAKE2b-256 7c4b823ad5090370ff12b7cceacd0faeaf9d0c648be8a9955137cdc80c111e47

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b7a1d79f58c307c5c416d10af61d74826045900f9ff4b6822805312569eab80a
MD5 58033c8dda3d8e08aeee47d513579c33
BLAKE2b-256 07b51c3ac189394f012029b16d3fc23e08abe36cb1c1e5fb14f6c5d305294d6f

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 daf4ed48f2ecca6c9260261f178cb71d8e8026fa82c3e4c809c0a7e2b3c66689
MD5 2faaf7bd51c30218a37353492edfd973
BLAKE2b-256 9d1f58846fe00e55ceea341f1f34306de8cf0f2a3bb9a5e2783767ef20b989d2

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 274.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb_io-0.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a50e4267d2f487ee8bfd75c1ef97503e7fcd8f6a744d36650df7742a27a5d26d
MD5 339a4612cb05410f86f0327225570f62
BLAKE2b-256 02b8067d661f0e7456949e20d26698c28aed7e3d7353e49b214b4a2cc3557a2b

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d888635fe99db44e2bd724b728f612270955a50829d1b364e8c39e90185f7681
MD5 b7329ec9593230767758d30892f13d7e
BLAKE2b-256 f14f85577384fd61616dc4aab6a980a559a808a084039033a600a44116bb1c5b

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 07c8b43d09f9494a7b608eafef92c3ea937a5d2eeb81f00a3ee82928796f6b82
MD5 e959e6a23907385667ebc7df67729b27
BLAKE2b-256 87b9811f1a71b669a2485a6257b055dec64c49d4d385b79ba5ca6f55f4339d19

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c47faddf92a1faee971f5555c3cd412bb3739a4122c046db9fcce8ede41ecaa1
MD5 b8a13b5f6c012ac47d690bcc6b4b1957
BLAKE2b-256 cd5e78a2b146052a414ebb79c1975f1e986afb0ded29c63bc499a4f4c111a88d

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 782e3ed62319a75c0d014528c37ea412d2b6005153e7fe975dbe29b81ffd4a6d
MD5 b71f8cf841c494ddf367362dbd41b218
BLAKE2b-256 98ed1405151e6a8763b14fd3b881966b43644a7858b9931f16b2bd3faf4363a7

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.2.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 274.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb_io-0.2.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c330a029638dccab6b332646f82114f4c91f4dec89958e986ad137f1dded5cd8
MD5 269ba6e0e80ad54782d9e191ef641c19
BLAKE2b-256 b28cc711450fb7f1cf9c3510297f5dcc718c844580d254635c7252f19a7fed65

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7f6d0b8b1c101c7d66062730bd6e9e346339c228414b5d4c5d2737e38d62462
MD5 994829f9b627ed5268008534f6ddb0aa
BLAKE2b-256 ae9ea9e6edf30564251bea41aaded6e554a6ff0b6b9cc3bad9367b38460f644e

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6488647911286112fe35baa94803879dc1163bfa964b2fa299805c8e31b4e39
MD5 35e5a07ffabf5b63e20f1409f3c90ef7
BLAKE2b-256 1a5af2ac74e925e48e2021186b90abc4d1174844cd950d625b65986e0d3eb072

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1a4bc483e7942b37d0739b51ccb388fe10c615f4ce73ceeae1922b784bef1dd5
MD5 82b3ef5b45639669a4bd3b26002bc8ed
BLAKE2b-256 c6647846c52e58048b0d4ca59c1d42e4ca08a8488aef77db4c205418546b79e5

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dbaba586a80ea1363754d265ce34e2cb3084f1c6b7c3b8fe269f8127d5ed1c5c
MD5 e144aa8ba55293a8eb98054770726af0
BLAKE2b-256 97f3c7a72288931a13ccb7a30534a51c8c80571454c0b8f135db9248fe5b24c9

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: gb_io-0.2.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 274.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for gb_io-0.2.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 c845e37aa890072dbcedb960047fa19326b9c01f0de8c165f05af6656c235e0e
MD5 ee06c4a8b36b1ae26fba08b67d438a4e
BLAKE2b-256 8774cbcf8dc3fff2dfbf192d5ba6b509c386d76023369aa02e2fccdb60da4e31

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9351a408f68c6a79fa1d29b60e8a8f09eb589785394b4dbe50eebe1e4747660c
MD5 ab7b03f76bc02741696a3ca5573e8854
BLAKE2b-256 83e20f95c6a67533d785f5f41fb97fceca88ec9b6b07516e278dd91d338194f8

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2d8b38477b11fb29a075f2148924380592e16710d0c029dd5e33fcec355fd3f
MD5 bd921a73770f5f3c5e15918dacdd8f64
BLAKE2b-256 79ea1284d3ddf32cf1e8174f39eff5c6bb08014b6ded18130b911cf90ae3c61d

See more details on using hashes here.

Provenance

File details

Details for the file gb_io-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for gb_io-0.2.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2e83504e2e783449d3b8c81e92f018dc994774d06662bc05957c359d726f1ae7
MD5 b619ee6351723a63bf2a67db40169be1
BLAKE2b-256 63a9ddc8ca0c5570a822446ad001a618f8de66c5ee8d371b6ecd7a5b38ea1907

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page