Skip to main content

Python client for discovering and capturing GBFS bikeshare feeds.

Project description

bikeshare-client

A Python client for discovering and capturing live bikeshare data feeds made publically available by hundreds of global bikeshare providers in accordance with the General Bikeshare Feed Specification (GBFS) standard.

This module is built with the intention of laying some of the groundwork for supporting more complex applications built around the consumption of live bikeshare data.

Installation

Install from PyPi using pip, a package manager for Python.

 pip install gbfs-client

Examples

Searching for bikeshare systems in WI and NY using the system discovery service:

>>> from gbfs.services import SystemDiscoveryService
>>> ds = SystemDiscoveryService()
>>> len(ds.system_ids)
221
>>> [x.get('System ID') for x in ds.systems if 'WI' in x.get('Location')]
['bcycle_bublr', 'bcycle_madison']
>>> ds.get_system_by_id('bcycle_madison')
{'Country Code': 'US', 'Name': 'Madison B-cycle', 'Location': 'Madison, WI', 'System ID': 'bcycle_madison', 'URL': 'https://madison.bcycle.com', 'Auto-Discovery URL': 'https://gbfs.bcycle.com/bcycle_madison/gbfs.json'}
>>> [x.get('System ID') for x in ds.systems if 'citi bike' in x.get('Name').lower()]
['NYC', 'jump_nyc', 'lime_new_york', 'reddy_bikeshare', 'sobi_long_beach']
>>> ds.get_system_by_id('NYC')
{'Country Code': 'US', 'Name': 'Citi Bike', 'Location': 'NYC, NY', 'System ID': 'NYC', 'URL': 'https://www.citibikenyc.com', 'Auto-Discovery URL': 'https://gbfs.citibikenyc.com/gbfs/gbfs.json'}

Instantiating a GBFS client for Citi Bike (NYC) and exploring its available feeds:

>>> client = ds.instantiate_client('NYC')
>>> client.feed_names
['system_alerts', 'system_information', 'station_information', 'station_status', 'system_regions']
>>> client.request_feed('system_alerts')
{'last_updated': datetime.datetime(2018, 12, 3, 1, 49, 55), 'ttl': 10, 'data': {'alerts': []}}

Instantiating a GBFS client directly (without the discovery service) using the auto-discovery URL for Citi Bike (found earlier):

>>> from gbfs.client import GBFSClient
>>> client = GBFSClient('https://gbfs.citibikenyc.com/gbfs/gbfs.json', 'en')

Searching Citi Bike's station_information feed for two specific stations, one near 49th/8th ave and the other near Barclay/Church:

>>> stations = client.request_feed('station_information').get('data').get('stations')
>>> [(x.get('name'), x.get('station_id')) for x in stations if '49' in x.get('name')]
[('Broadway & W 49 St', '173'), ('W 49 St & 8 Ave', '450'), ('49 Ave & 21 St', '3606')]
>>> home = next(filter(lambda x: x.get('station_id') == '450', stations))
>>> home
{'station_id': '450', 'name': 'W 49 St & 8 Ave', 'lat': 40.76227205, 'lon': -73.98788205, 'capacity': 59}
>>> [(x.get('name'), x.get('station_id')) for x in stations if 'Barclay' in x.get('name')]
[('Barclay St & Church St', '417')]
>>> work = next(filter(lambda x: x.get('station_id') == '417', stations))
>>> work
{'station_id': '417', 'name': 'Barclay St & Church St', 'lat': 40.71291224, 'lon': -74.01020234, 'capacity': 23}

Building a small app to poll a station's live status and print a nice message:

>>> def live_status_for(station):
...     all_statuses = client.request_feed('station_status').get('data').get('stations')
...     return next(filter(lambda x: x.get('station_id') == station.get('station_id'), all_statuses))
...

>>> def print_status_message(station):
...     bikes_available = live_status_for(station).get('num_bikes_available')
...     print('{} is currently at {}% capacity with {} bikes available to rent.'.format(
...         station.get('name'), int(100*bikes_available/station.get('capacity')), bikes_available))

>>> print_status_message(home)
W 49 St & 8 Ave is currently at 16% capacity with 10 bikes available to rent.
>>> print_status_message(work)
Barclay St & Church St is currently at 91% capacity with 21 bikes available to rent.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbfs-client-0.0.2.tar.gz (16.1 kB view details)

Uploaded Source

Built Distribution

gbfs_client-0.0.2-py3-none-any.whl (17.4 kB view details)

Uploaded Python 3

File details

Details for the file gbfs-client-0.0.2.tar.gz.

File metadata

  • Download URL: gbfs-client-0.0.2.tar.gz
  • Upload date:
  • Size: 16.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for gbfs-client-0.0.2.tar.gz
Algorithm Hash digest
SHA256 7cca5e7d79762758ecb8835cd98216d60b07fb1a88958d7e0735f3e6c5cf37e8
MD5 7251624b2865133521724d318024cb43
BLAKE2b-256 258c5764f71d5da1046107335ad2afc5bd815966a8aadc1cc4e04ec4b943e341

See more details on using hashes here.

File details

Details for the file gbfs_client-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: gbfs_client-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 17.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.7

File hashes

Hashes for gbfs_client-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 34908bf740f05ae14fbd87129059c71298fe4c1e1888035cd0ec6fa06c17baa6
MD5 655217cf6a8aa67b2913d05a5ad5f470
BLAKE2b-256 278614d4a08a55d860f561c3465c514fba9da01c58fdc04cc84a3509d291981f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page