Gradient boosting libraries integrated with pytorch
Project description
gbnet
Gradient Boosting Modules for pytorch
Introduction
Gradient Boosting Machines only require gradients and, for modern packages, hessians to train. Pytorch (and other neural network packages) calculates gradients and hessians. GBMs can therefore be fit as the first layer in neural networks using Pytorch. This package provides access to XGBoost and LightGBM as Pytorch Modules to do exactly this.
CatBoost is supported in an experimental capacity since the current gbnet integration with CatBoost is not as performant as the other GBDT packages.
Install
pip install gbnet
Troubleshooting
- Currently, the biggest difference between training using
gbnet
vs basictorch
, is thatgbnet
, like basic usage ofxgboost
andlightgbm
, requires the entire dataset to be fed in. Cached predictions allow these packages to train quickly, and caching cannot happen if input batches change with each training/boosting round. Some additional info is provided in #12.
Basic training of a GBM for comparison to existing packages
import time
import lightgbm as lgb
import numpy as np
import xgboost as xgb
import torch
from gbnet import lgbmodule, xgbmodule
# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 20
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])
iters = 100
t0 = time.time()
# XGBoost training for comparison
xbst = xgb.train(
params={'objective': 'reg:squarederror', 'base_score': 0.0},
dtrain=xgb.DMatrix(X, label=Y),
num_boost_round=iters
)
t1 = time.time()
# LightGBM training for comparison
lbst = lgb.train(
params={'verbose':-1},
train_set=lgb.Dataset(X, label=Y.flatten(), init_score=[0 for i in range(n)]),
num_boost_round=iters
)
t2 = time.time()
# XGBModule training
xnet = xgbmodule.XGBModule(n, input_dim, output_dim, params={})
xmse = torch.nn.MSELoss()
for i in range(iters):
xnet.zero_grad()
xpred = xnet(X)
loss = 1/2 * xmse(xpred, torch.Tensor(Y)) # xgboost uses 1/2 (Y - P)^2
loss.backward(create_graph=True)
xnet.gb_step(X)
t3 = time.time()
# LGBModule training
lnet = lgbmodule.LGBModule(n, input_dim, output_dim, params={})
lmse = torch.nn.MSELoss()
for i in range(iters):
lnet.zero_grad()
lpred = lnet(X)
loss = lmse(lpred, torch.Tensor(Y))
loss.backward(create_graph=True)
lnet.gb_step(X)
t4 = time.time()
print(np.max(np.abs(xbst.predict(xgb.DMatrix(X)) - xnet(X).detach().numpy().flatten()))) # 9.537e-07
print(np.max(np.abs(lbst.predict(X) - lnet(X).detach().numpy().flatten()))) # 2.479e-07
print(f'xgboost time: {t1 - t0}') # 0.089
print(f'lightgbm time: {t2 - t1}') # 0.084
print(f'xgbmodule time: {t3 - t2}') # 0.166
print(f'lgbmodule time: {t4 - t3}') # 0.123
Training XGBoost and LightGBM together
import time
import numpy as np
import torch
from gbnet import lgbmodule, xgbmodule
# Create new module that jointly trains multi-output xgboost and lightgbm models
# the outputs of these gbm models is then combined by a linear layer
class GBPlus(torch.nn.Module):
def __init__(self, input_dim, intermediate_dim, output_dim):
super(GBPlus, self).__init__()
self.xgb = xgbmodule.XGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
self.lgb = lgbmodule.LGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
self.linear = torch.nn.Linear(intermediate_dim, output_dim)
def forward(self, input_array):
xpreds = self.xgb(input_array)
lpreds = self.lgb(input_array)
preds = self.linear(xpreds + lpreds)
return preds
def gb_step(self, input_array):
self.xgb.gb_step(input_array)
self.lgb.gb_step(input_array)
# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 10
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])
intermediate_dim = 10
gbp = GBPlus(input_dim, intermediate_dim, output_dim)
mse = torch.nn.MSELoss()
optimizer = torch.optim.Adam(gbp.parameters(), lr=0.005)
t0 = time.time()
losses = []
for i in range(100):
optimizer.zero_grad()
preds = gbp(X)
loss = mse(preds, torch.Tensor(Y))
loss.backward(create_graph=True) # create_graph=True required for any gbnet
losses.append(loss.detach().numpy().copy())
gbp.gb_step(X) # required to update the gbms
optimizer.step()
t1 = time.time()
print(t1 - t0) # 5.821
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gbnet-0.1.5.tar.gz
.
File metadata
- Download URL: gbnet-0.1.5.tar.gz
- Upload date:
- Size: 11.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d6eda377f3228f28f1942feef12b09c509b9ca2bd65b469017b8a51f202c973 |
|
MD5 | 281dc9039139db3e9712c2f99547ed00 |
|
BLAKE2b-256 | 764ff990b70e7e6be3b81dcf3edfdb35d3dbc0bed26fd19b931091b8d24161ab |
File details
Details for the file gbnet-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: gbnet-0.1.5-py3-none-any.whl
- Upload date:
- Size: 15.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3e46b7299dae25b677e016cd220dcc4f1e9e5e0ea4f8af1a33e987df56d0e82 |
|
MD5 | 027a34eed60c9c9891cb2ea6ff4a1fb4 |
|
BLAKE2b-256 | a6157905a8edbd097331c81baf3da4ad3c1f7702bf35059380876d349c5f5633 |