Skip to main content

Gradient boosting libraries integrated with pytorch

Project description

gbnet

Gradient boosting libraries integrated with Pytorch

Install

pip install gbnet

Introduction

There are two main components of gbnet:

  • (1) gbnet provides the Pytorch Modules that allow fitting of XGBoost and/or LightGBM models using Pytorch's computational network and differentiation capabilities.

    • For example, if $F(X)$ is the output of an XGBoost model, you can use Pytorch to define the loss function, $L(y, F(X))$. Pytorch handles the gradients of $L$ so, as a user, you only specify the loss function.
    • You can also fit two (or more) boosted models together with Pytorch-supported parametric components. For instance, a recommendation prediction might look like this: $\sigma(F(user) \times G(item))$ where both $F$ and $G$ are separate boosting models producing embeddings of users and items respectively. gbnet makes defining and fitting such a model almost as easy as using Pytorch itself.
  • (2) gbnet provides specific example estimators that accomplish things that were not previously possible using only XGBoost or LightGBM.

    • You can find these estimators in gbnet/models/. Right now there is a forecasting model that in the settings we tested, beats the performance of Meta's Prophet algorithm (see the forecasting PR for a comparison).
    • Other models with plans to be integrated are Ordinal Regression and Time-varying Survival analysis.

Models

Forecasting

gbnet.models.forecasting.Forecast outperforms Meta's popular Prophet algorithm on basic benchmarks (see the forecasting PR for a comparison). Starter comparison code:

import pandas as pd
from sklearn.metrics import root_mean_squared_error

from gbnet.models import forecasting

## Load and split data
url = "https://raw.githubusercontent.com/facebook/prophet/main/examples/example_yosemite_temps.csv"
df = pd.read_csv(url)
df['ds'] = pd.to_datetime(df['ds'])

train = df[df['ds'] < df['ds'].median()].reset_index(drop=True).copy()
test = df[df['ds'] >= df['ds'].median()].reset_index(drop=True).copy()

## train and predict comparing out-of-the-box gbnet & prophet

# gbnet
gbnet_forecast_model = forecasting.Forecast()
gbnet_forecast_model.fit(train, train['y'])
test['gbnet_pred'] = gbnet_forecast_model.predict(test)

# prophet
prophet_model = Prophet()
prophet_model.fit(train)
test['prophet_pred'] = prophet_model.predict(test)['yhat']

sel = test['y'].notnull()
print(f"gbnet rmse: {root_mean_squared_error(test[sel]['y'], test[sel]['gbnet_pred'])}")
print(f"prophet rmse: {root_mean_squared_error(test[sel]['y'], test[sel]['prophet_pred'])}")

# gbnet rmse: 11.036844941272257
# prophet rmse: 20.10509806878121

Pytorch Modules

There are currently just two Pytorch Modules: lgbmodule.LGBModule and xgbmodule.XGBModule. These create the interface between Pytorch and the LightGBM and XGBoost packages respectively.

Conceptually, how can Pytorch be used to fit XGBoost or LightGBM models?

Gradient Boosting Machines only require gradients and, for modern packages, hessians to train. Pytorch (and other neural network packages) calculates gradients and hessians. GBMs can therefore be fit as the first layer in neural networks using Pytorch.

CatBoost is also supported but in an experimental capacity since the current gbnet integration with CatBoost is not as performant as the other GBDT packages.

Is training a gbnet model closer to training a neural network or to training a GBM?

It's closer to training a GBM. Currently, the biggest difference between training using gbnet vs basic torch, is that gbnet, like basic usage of xgboost and lightgbm, requires the entire dataset to be fed in. Cached predictions allow these packages to train quickly, and caching cannot happen if input batches change with each training/boosting round. Some additional info is provided in #12.

Basic training of a GBM for comparison to existing gradient boosting packages

import time

import lightgbm as lgb
import numpy as np
import xgboost as xgb
import torch

from gbnet import lgbmodule, xgbmodule

# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 20
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])

iters = 100
t0 = time.time()

# XGBoost training for comparison
xbst = xgb.train(
    params={'objective': 'reg:squarederror', 'base_score': 0.0},
    dtrain=xgb.DMatrix(X, label=Y),
    num_boost_round=iters
)
t1 = time.time()

# LightGBM training for comparison
lbst = lgb.train(
    params={'verbose':-1},
    train_set=lgb.Dataset(X, label=Y.flatten(), init_score=[0 for i in range(n)]),
    num_boost_round=iters
)
t2 = time.time()

# XGBModule training
xnet = xgbmodule.XGBModule(n, input_dim, output_dim, params={})
xmse = torch.nn.MSELoss()

for i in range(iters):
    xnet.zero_grad()
    xpred = xnet(X)

    loss = 1/2 * xmse(xpred, torch.Tensor(Y))  # xgboost uses 1/2 (Y - P)^2
    loss.backward(create_graph=True)

    xnet.gb_step(X)
t3 = time.time()

# LGBModule training
lnet = lgbmodule.LGBModule(n, input_dim, output_dim, params={})
lmse = torch.nn.MSELoss()
for i in range(iters):
    lnet.zero_grad()
    lpred = lnet(X)

    loss = lmse(lpred, torch.Tensor(Y))
    loss.backward(create_graph=True)

    lnet.gb_step(X)
t4 = time.time()


print(np.max(np.abs(xbst.predict(xgb.DMatrix(X)) - xnet(X).detach().numpy().flatten())))  # 9.537e-07
print(np.max(np.abs(lbst.predict(X) - lnet(X).detach().numpy().flatten())))  # 2.479e-07
print(f'xgboost time: {t1 - t0}')   # 0.089
print(f'lightgbm time: {t2 - t1}')  # 0.084
print(f'xgbmodule time: {t3 - t2}') # 0.166
print(f'lgbmodule time: {t4 - t3}') # 0.123

Training XGBoost and LightGBM together

import time

import numpy as np
import torch

from gbnet import lgbmodule, xgbmodule


# Create new module that jointly trains multi-output xgboost and lightgbm models
# the outputs of these gbm models is then combined by a linear layer
class GBPlus(torch.nn.Module):
    def __init__(self, input_dim, intermediate_dim, output_dim):
        super(GBPlus, self).__init__()

        self.xgb = xgbmodule.XGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
        self.lgb = lgbmodule.LGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
        self.linear = torch.nn.Linear(intermediate_dim, output_dim)

    def forward(self, input_array):
        xpreds = self.xgb(input_array)
        lpreds = self.lgb(input_array)
        preds = self.linear(xpreds + lpreds)
        return preds

    def gb_step(self, input_array):
        self.xgb.gb_step(input_array)
        self.lgb.gb_step(input_array)

# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 10
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])

intermediate_dim = 10
gbp = GBPlus(input_dim, intermediate_dim, output_dim)
mse = torch.nn.MSELoss()
optimizer = torch.optim.Adam(gbp.parameters(), lr=0.005)

t0 = time.time()
losses = []
for i in range(100):
    optimizer.zero_grad()
    preds = gbp(X)

    loss = mse(preds, torch.Tensor(Y))
    loss.backward(create_graph=True)  # create_graph=True required for any gbnet
    losses.append(loss.detach().numpy().copy())

    gbp.gb_step(X)  # required to update the gbms
    optimizer.step()
t1 = time.time()
print(t1 - t0)  # 5.821
image

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnet-0.1.6.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

gbnet-0.1.6-py3-none-any.whl (16.2 kB view details)

Uploaded Python 3

File details

Details for the file gbnet-0.1.6.tar.gz.

File metadata

  • Download URL: gbnet-0.1.6.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for gbnet-0.1.6.tar.gz
Algorithm Hash digest
SHA256 72247d5afcbb7994cdec7de7d20ccdf310a71b93bcbed1b100dde911bf43c571
MD5 665f3b019cfbe07c288274942d274016
BLAKE2b-256 e008f1393caa8b0ec752947ac7a7b2194e80b2a3821f34fdf943f96fb1fe97aa

See more details on using hashes here.

File details

Details for the file gbnet-0.1.6-py3-none-any.whl.

File metadata

  • Download URL: gbnet-0.1.6-py3-none-any.whl
  • Upload date:
  • Size: 16.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for gbnet-0.1.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9fd0e271071a939d0ab845f60a583cc3075958008f61481e50a81a27ed70abb9
MD5 6565944f61083360290eb0986593dcc7
BLAKE2b-256 5c726f769b4dc51a78557f05a44378b369b2e8ad21b2658b69ce19ac4c2fc1fb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page