Gradient boosting libraries integrated with pytorch
Project description
gbnet
Gradient boosting libraries integrated with Pytorch
Install
pip install gbnet
Introduction
There are two main components of gbnet
:
-
(1)
gbnet
provides the Pytorch Modules that allow fitting of XGBoost and/or LightGBM models using Pytorch's computational network and differentiation capabilities.- For example, if $
F(X)
$ is the output of an XGBoost model, you can use Pytorch to define the loss function, $L(y, F(X))
$. Pytorch handles the gradients of $L
$ so, as a user, you only specify the loss function. - You can also fit two (or more) boosted models together with Pytorch-supported parametric components. For instance, a recommendation prediction might look like this: $
\sigma(F(user) \times G(item))
$ where both $F
$ and $G
$ are separate boosting models producing embeddings of users and items respectively.gbnet
makes defining and fitting such a model almost as easy as using Pytorch itself.
- For example, if $
-
(2)
gbnet
provides specific example estimators that accomplish things that were not previously possible using only XGBoost or LightGBM.- You can find these estimators in
gbnet/models/
. Right now there is a forecasting model that in the settings we tested, beats the performance of Meta's Prophet algorithm (see the forecasting PR for a comparison). - Other models with plans to be integrated are Ordinal Regression and Time-varying Survival analysis.
- You can find these estimators in
Models
Forecasting
gbnet.models.forecasting.Forecast
outperforms Meta's popular Prophet algorithm on basic benchmarks (see the forecasting PR for a comparison). Starter comparison code:
import pandas as pd
from prophet import Prophet
from sklearn.metrics import root_mean_squared_error
from gbnet.models import forecasting
## Load and split data
url = "https://raw.githubusercontent.com/facebook/prophet/main/examples/example_yosemite_temps.csv"
df = pd.read_csv(url)
df['ds'] = pd.to_datetime(df['ds'])
train = df[df['ds'] < df['ds'].median()].reset_index(drop=True).copy()
test = df[df['ds'] >= df['ds'].median()].reset_index(drop=True).copy()
## train and predict comparing out-of-the-box gbnet & prophet
# gbnet
gbnet_forecast_model = forecasting.Forecast()
gbnet_forecast_model.fit(train, train['y'])
test['gbnet_pred'] = gbnet_forecast_model.predict(test)
# prophet
prophet_model = Prophet()
prophet_model.fit(train)
test['prophet_pred'] = prophet_model.predict(test)['yhat']
sel = test['y'].notnull()
print(f"gbnet rmse: {root_mean_squared_error(test[sel]['y'], test[sel]['gbnet_pred'])}")
print(f"prophet rmse: {root_mean_squared_error(test[sel]['y'], test[sel]['prophet_pred'])}")
# gbnet rmse: 7.930621578059079
# prophet rmse: 20.10509806878121
Pytorch Modules
There are currently just two Pytorch Modules: lgbmodule.LGBModule
and xgbmodule.XGBModule
. These create the interface between Pytorch and the LightGBM and XGBoost packages respectively.
Conceptually, how can Pytorch be used to fit XGBoost or LightGBM models?
Gradient Boosting Machines only require gradients and, for modern packages, hessians to train. Pytorch (and other neural network packages) calculates gradients and hessians. GBMs can therefore be fit as the first layer in neural networks using Pytorch.
CatBoost is also supported but in an experimental capacity since the current gbnet integration with CatBoost is not as performant as the other GBDT packages.
Is training a gbnet
model closer to training a neural network or to training a GBM?
It's closer to training a GBM. Currently, the biggest difference between training using gbnet
vs basic torch
, is that gbnet
, like basic usage of xgboost
and lightgbm
, requires the entire dataset to be fed in. Cached predictions allow these packages to train quickly, and caching cannot happen if input batches change with each training/boosting round. Some additional info is provided in #12.
Basic training of a GBM for comparison to existing gradient boosting packages
import time
import lightgbm as lgb
import numpy as np
import xgboost as xgb
import torch
from gbnet import lgbmodule, xgbmodule
# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 20
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])
iters = 100
t0 = time.time()
# XGBoost training for comparison
xbst = xgb.train(
params={'objective': 'reg:squarederror', 'base_score': 0.0},
dtrain=xgb.DMatrix(X, label=Y),
num_boost_round=iters
)
t1 = time.time()
# LightGBM training for comparison
lbst = lgb.train(
params={'verbose':-1},
train_set=lgb.Dataset(X, label=Y.flatten(), init_score=[0 for i in range(n)]),
num_boost_round=iters
)
t2 = time.time()
# XGBModule training
xnet = xgbmodule.XGBModule(n, input_dim, output_dim, params={})
xmse = torch.nn.MSELoss()
for i in range(iters):
xnet.zero_grad()
xpred = xnet(X)
loss = 1/2 * xmse(xpred, torch.Tensor(Y)) # xgboost uses 1/2 (Y - P)^2
loss.backward(create_graph=True)
xnet.gb_step(X)
t3 = time.time()
# LGBModule training
lnet = lgbmodule.LGBModule(n, input_dim, output_dim, params={})
lmse = torch.nn.MSELoss()
for i in range(iters):
lnet.zero_grad()
lpred = lnet(X)
loss = lmse(lpred, torch.Tensor(Y))
loss.backward(create_graph=True)
lnet.gb_step(X)
t4 = time.time()
print(np.max(np.abs(xbst.predict(xgb.DMatrix(X)) - xnet(X).detach().numpy().flatten()))) # 9.537e-07
print(np.max(np.abs(lbst.predict(X) - lnet(X).detach().numpy().flatten()))) # 2.479e-07
print(f'xgboost time: {t1 - t0}') # 0.089
print(f'lightgbm time: {t2 - t1}') # 0.084
print(f'xgbmodule time: {t3 - t2}') # 0.166
print(f'lgbmodule time: {t4 - t3}') # 0.123
Training XGBoost and LightGBM together
import time
import numpy as np
import torch
from gbnet import lgbmodule, xgbmodule
# Create new module that jointly trains multi-output xgboost and lightgbm models
# the outputs of these gbm models is then combined by a linear layer
class GBPlus(torch.nn.Module):
def __init__(self, input_dim, intermediate_dim, output_dim):
super(GBPlus, self).__init__()
self.xgb = xgbmodule.XGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
self.lgb = lgbmodule.LGBModule(n, input_dim, intermediate_dim, {'eta': 0.1})
self.linear = torch.nn.Linear(intermediate_dim, output_dim)
def forward(self, input_array):
xpreds = self.xgb(input_array)
lpreds = self.lgb(input_array)
preds = self.linear(xpreds + lpreds)
return preds
def gb_step(self, input_array):
self.xgb.gb_step(input_array)
self.lgb.gb_step(input_array)
# Generate Dataset
np.random.seed(100)
n = 1000
input_dim = 10
output_dim = 1
X = np.random.random([n, input_dim])
B = np.random.random([input_dim, output_dim])
Y = X.dot(B) + np.random.random([n, output_dim])
intermediate_dim = 10
gbp = GBPlus(input_dim, intermediate_dim, output_dim)
mse = torch.nn.MSELoss()
optimizer = torch.optim.Adam(gbp.parameters(), lr=0.005)
t0 = time.time()
losses = []
for i in range(100):
optimizer.zero_grad()
preds = gbp(X)
loss = mse(preds, torch.Tensor(Y))
loss.backward(create_graph=True) # create_graph=True required for any gbnet
losses.append(loss.detach().numpy().copy())
gbp.gb_step(X) # required to update the gbms
optimizer.step()
t1 = time.time()
print(t1 - t0) # 5.821
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file gbnet-0.1.7.tar.gz
.
File metadata
- Download URL: gbnet-0.1.7.tar.gz
- Upload date:
- Size: 15.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 66a96c74cea331abd38eeb56b95f1773ebc5e6fbcec94a1af9daa36d9f2e2578 |
|
MD5 | 7e4399272441312b69f2506da781bd2c |
|
BLAKE2b-256 | 7b74d489e7e6d4484882bd1f79d232cb25d0c281e3280280708d72e7b39afe68 |
File details
Details for the file gbnet-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: gbnet-0.1.7-py3-none-any.whl
- Upload date:
- Size: 17.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 194fb4c99245a82146c8604ae83608765516af82c075bbc581bd8c92a40306d2 |
|
MD5 | bc4a0d16f593f8463c99fd737c3b17fb |
|
BLAKE2b-256 | 963b6eebbfefed6c2040016233425e6b60c7beb74d22c089e3c3a2b5c11b1082 |