Skip to main content

Simple plug and play GBNF compiler for llama.cpp

Project description

GBNF Compiler (Python)

Dependency-free GBNF Compiler, plug and play for llama.cpp GBNF.

Simple yet powerful GBNF Compiler, use it like handlebars.js with better response from LLMs.

Why ?

GBNF is very useful to confine the response format from LLMs.

In most of the time, using sentence-based GBNF can produce better result than JSON-based GBNF in most LLMs without fine-tuning, gbnf-compiler provides the flexibility to construct or parse sentence / JSON / (anything you can think of) GBNF.

Getting Started

pip install gbnf-compiler

How to Use

  1. Define the LLM Response Template
  2. Create the Rule
  3. Send it out, done!
import requests
from gbnf_compiler.sentence import GBNFCompiler
from gbnf_compiler.rules import *

# Define your Prompt
prompt = "What tool will you use to calculate 2^5 ?"

# Define the LLM Response Template
# Each {{}} is a variable with a rule
template = "I choose {{tool}} because {{reason}}"

# Define the Rule - "tools" for variable ("tool")
tools = multiple_choice('tool', ['calculator', 'web-search', 'web-browse'])

# Create the GBNF Compiler
# Single Sentence is a default Grammar Rule which ends with '.'
c = GBNFCompiler(template, { 'tool': tools, 'reason': SINGLE_SENTENCE })
print(c.grammar())

# Try a dummy result
text = "I choose calculator because it is the most efficient and accurate way to calculate 2^5."
result = c.parse(text)
print(result)

"""
Result: 
{'tool': 'calculator', 'reason': 'it is the most efficient and accurate way to calculate 2^5.'}
"""

# Example: Send it out to local llama.cpp
def template(role: str, prompt: str):
    return """[INST] <<SYS>>
{role}
<</SYS>>
{prompt}
[/INST]""".format(role=role, prompt=prompt)

data_json = {
    "prompt": template("", prompt), "temperature": 0.0,
    "n_predict": 512, "top_p": 0.2, "top_k": 10,
    "stream": False, "grammar": c.grammar() }

resp = requests.post(
    url="http://127.0.0.1:9999/completion",
    headers={"Content-Type": "application/json"},
    json=data_json,
)
result = resp.json()["content"]
print(result)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

gbnf_compiler-0.1.0.tar.gz (4.6 kB view details)

Uploaded Source

Built Distribution

gbnf_compiler-0.1.0-py3-none-any.whl (5.4 kB view details)

Uploaded Python 3

File details

Details for the file gbnf_compiler-0.1.0.tar.gz.

File metadata

  • Download URL: gbnf_compiler-0.1.0.tar.gz
  • Upload date:
  • Size: 4.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for gbnf_compiler-0.1.0.tar.gz
Algorithm Hash digest
SHA256 67fbec54001062e55cf21b428eef4c673630ebb601c82909d98e990cb23c55b4
MD5 ccca2e524e7407e3f4f874686cd86529
BLAKE2b-256 0b3aafa698e587be68abc3cc3b88f54a227438a8a8e1305a926badd698879ce1

See more details on using hashes here.

File details

Details for the file gbnf_compiler-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for gbnf_compiler-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 2da632cbb5e70865a49b4f0647bcc94bb6887a6b9c44185d009dac7ed101efca
MD5 b0a5e08dff187d9e2d65f4b82396d6f2
BLAKE2b-256 963bf937ba9ba70d1dd7a27fa566c935662a2be0ca54d080063222e0dac851cb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page